Valentyna Mokina
HEPHY OEAW
for the CRESST collaboration

Cryogenic Rare Event Search with Superconducting Thermometers
CRESST located at LNGS (Laboratori Nazionali del Gran Sasso) in Italy

- Cryogenic scintillating calorimeter
- Target material is CaWO₄
- Read out channels: phonon and scintillation light

Shielding:
- polyethylene;
- lead;
- copper;
- muon veto system.

CRESST-III Phase 1
The CRESST experiment

Direct detection of dark matter particles via their scattering off target nuclei

- target material: CaWO$_4$ single crystals
- particle interaction
 - heat (phonon) signal
 read-out with thermometer
 - light signal
 read-out with light detector
- reflective and scintillating housing

Target crystals operated as cryogenic calorimeters (~15mK)
Event discrimination

Light Yield = \frac{\text{Light signal}}{\text{Phonon signal}}

Characteristic of the event type

Excellent discrimination between potential signal events (nuclear recoils) and dominant radioactive background (electron recoils)

ROI: region of interest for dark matter search
CRESST-III Phase 1 low-threshold detectors

- Cuboid crystals of \((20 \times 20 \times 10)\text{mm}^3\) \((\approx 24\text{g})\) \(\times\) 10 modules
- Design goal: **100 eV threshold**
- Fully scintillating housing (holding with CaWO\(_4\) sticks)
- Instrumented sticks (iSticks) for holding main crystal (veto for events happening in sticks)

Data taking from July 2016 to January 2018
Optimum thresholds

5 detectors reach/exceed the CRESST-III design goal - threshold < 100eV
Optimum thresholds: Detector Module A

Detector A the lowest threshold! New benchmark point in low mass dark matter search.

- **Data taking period:** 10/2016 – 01/2018
- **Non-blind data (dynamically growing):** 20% randomly selected
- **Target crystal mass:** 23.6g
- **Gross exposure (before cuts):** 5.7 kg days
- **Nuclear recoil threshold:** 30.1 eV

Acceptance region fixed before unblinding

99.5% W recoils above
50% O recoils below

Analysis optimized for very low energies: 30eV → 16keV

Valentyna Mokina - HEPHY OEAW October 25, 2018
Energy spectrum of accepted events

Yellin 1D optimum interval method

Energy spectrum expected for DM

(preliminary) Result

Energy spectrum of accepted events

(Yellin 1D optimum interval method)

Energy spectrum expected for DM
(preliminary) Result

Extended reach from $0.5\text{GeV/c}^2 \rightarrow 0.16\text{GeV/c}^2$

One order of magnitude improvement at 0.5 GeV/c^2
Conclusions

First CRESST-III run 07/2016 - 02/2018

Unprecedented low nuclear recoil thresholds of 30eV

Leading sensitivity over one order of magnitude: $160\text{MeV/c}^2 \rightarrow 1.8\text{GeV/c}^2$

LUX Migdal

0.4GeV/c^2
CRESST-III Phase 1 new run: Just starting

Key innovation
Upgraded detector modules with dedicated hardware changes to understand backgrounds

New feature
Active magnetic field compensation with three air coils for x,y & z-axes
Waiting for dark matter