Direct dark matter search with the CRESST-III experiment

EBERHARD KARLS

UNIVERSITÄT TÜBINGEN

T

TECHNISCHE UNIVERSITÄT MÜNCHEN

> Valentyna Mokina HEPHY OEAW for the CRESST collaboration

 $\Delta_{p} \cdot \Delta_{g} \ge \frac{1}{2} t$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Cryogenic Rare Event Search with Superconducting Thermometers

CRESST located at LNGS (Laboratori Nazionali del Gran Sasso) in Italy

The CRESST experiment

Direct detection of dark matter particles via their scattering off target nuclei

target material: CaWO₄ single crystals heat bath thermal coupling particle interaction light detector → heat (phonon) signal CaWO₄ read-out with thermometer reflective and \rightarrow light signal scintillating housing read-out with light detector thermometer thermal coupling reflective and scintillating housing heat bath

Target crystals operated as cryogenic calorimeters (\sim 15mK)

Event discrimination

Light Yield= <u>Light signal</u> Phonon signal

Characteristic of the event type

Excellent discrimination between potential signal events (nuclear recoils) and dominant radioactive background (electron recoils)

ROI: region of interest for dark matter search

CRESST-III Phase 1 low-threshold detectors

- Cuboid crystals of $(20 \times 20 \times 10)$ mm³ ($\approx 24g$) \times 10 modules
- Design goal: 100 eV threshold
- Fully scintillating housing (holding with CaWO₄ sticks)
- Instrumented sticks (iSticks) for holding main crystal (veto for events happening in sticks)

Data taking from July 2016 to January 2018

Optimum thresholds

5 detectors reach/exceed the CRESST-III design goal - threshold < 100eV

Optimum thresholds: Detector Module A

Detector A — the lowest threshold! New benchmark point in low mass dark matter search.

Dark matter data

Acceptance region fixed before unblinding

Analysis optimized for very low energies: $30eV \rightarrow 16keV$

(preliminary) Result

(preliminary) Result

Conclusions

First CRESST-III run 07/2016 - 02/2018

Unprecedented low nuclear recoil thresholds of 30eV Leading sensitivity over one order of magnitude: $160 \text{MeV/c}^2 \rightarrow 1.8 \text{GeV/c}^2$ LUX Migdal

CRESST-III Phase 1 new run: Just starting

Key innovation

Upgraded detector modules with dedicated hardware changes to understand backgrounds

New feature

Active magnetic field compensation with three air coils for x,y & z-axes

Waiting for dark matter

