

IV International Conference on Particle Physics and Astrophysics

The DAMPE experiment and its latest results

Piergiorgio Fusco University and INFN Bari - Italy on behalf of the DAMPE Collaboration

The DAMPE Collaboration

CHINA

- Purple Mountain Observatory, CAS, Nanjing, Prof. Jin Chang
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento

SWITZERLAND

University of Geneva

Scientific goals

- DAMPE DArk Matter Particle Explorer is a space particle detector aimed to:
 - study cosmic electrons spectra
 - study cosmic protons + nuclei spectrum and composition
 - astronomy with high-energy cosmic gamma-rays
 - search for dark matter signatures in lepton spectra
 - search for e.m. counterparts of gravitational waves or neutrinos
 - quest for exotic particles and phenomena
- Excellent performance:
 - detection of 5 GeV 10 TeV e/ γ , 50 GeV 100 TeV p and nuclei
 - energy resolution < 1.5% for 100 GeV e/ γ , < 40% for 800 GeV p
 - angular resolution < 0.2° for 100 GeV γ
 - field of view ~1 sr

The DAMPE instrument

DAMPE, AMS-02, Fermi LAT

Performance	DAMPE	AMS-02	Fermi LAT
e/γ Energy resol. @100 GeV (%)	<1.5	3	10
e/γ Angular resol. @100 GeV (deg.)	<0.2	0.3	0.1
e/p discrimination	>10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	32	17	8.6
Geometrical acceptance (m ² sr)	0.3	0.09	1

DAMPE facts

Mass: 1400 kg

Power consumption: 400 W

Readout channels: > 75k

Data transfer: 16 Gbyte/day

Lifetime: 5 years

The launch

- DAMPE was launched on Dec. 17th 2015
 - Launch site: Jiuquan Satellite Launch Center, Gobi desert, China
 - Orbit: 500 km altitude, Sun synchronous

Trigger rate and data transfer

P. Fusco – The DAMPE Experiment – ICCPA 2018 – October 25, 2018

7

Energy calibration

- The geomagnetic rigidity cut-off of cosmic-ray electrons (CRE) spectrum provides a reference for absolute energy calibration
 - low energy CRE flux is measured in the range 8 GeV < E < 100 GeV
 - flight data and Monte Carlo data (with back-tracing in Earth magnetic field model IGRF12) are compared
 - expected cut-off: 13.0 GeV; DAMPE measured cut-off 13.2 GeV
 - stable with time slight decrease due to solar modulation of primary electrons

Geomagnetic Cutoff Rigidity for 2018-10-15 13:00 GMT

Particle identification

 Several different PID methods used (Shape parameters; Boosted Decision Trees; Random Forest + Convolutional Neural Network)

An electron candidate (~5 TeV)

Electron/proton separation

- The "ζ shower parameter" was computed from the lateral shower development in BGO plus the energy deposition in the last layer
 - the cut ζ > 8.5 was adopted to discriminate e⁻ (and e⁺) from p
 - for 90% e[±] efficiency, p background ~2% @ 1 TeV, ~5% @ 2 TeV, ~10% @ 5 TeV

P. Fusco – The DAMPE Experiment – ICCPA 2018 – October 25, 2018 **11**

Validation of ζ parameter

- The ζ parameter was validated with beam tests and with photons
 - Different PID methods give consistent results

e⁺+e⁻ spectrum

- Cosmic-rays electrons and positrons from 20 GeV to ~5 TeV [Nature 552, 64 (2017)]
- Direct detection of a spectral break at 0.9 TeV (6.6 σ c.l.)
- A smoothly broken power law fits data (γ = 3.1 → 3.9)
- Next step: search for structures and anisotropies (nearby sources, pulsars, DM?)

Protons and nuclei: beam tests

- Identifying protons and nuclei with PSD and STK
 - charge measurement tested with ion beam tests at CERN
 - PSD: up to Argon; STK: up to Oxygen
 - charge resolution is dependent on Z and ranges from 0.2 to 0.4
 - more details in Astropart. Phys. 95, 6 (2017)

Protons and nuclei: flight data

Identifying protons and nuclei with PSD and STK

Protons and Helium spectra

- Protons: hardening at E > 300 GeV, softening at E > 10 TeV
- Helium: hardening at 200 GeV
- Analysis is being extended to higher energies

Photons: background

- Charged particles are a massive background for photons
- Protons vs γ:
 - 10⁵ factor @ E > 100 GeV
 - mainly rejected using the shower profile and the onboard trigger
- Electrons vs γ:
 - 10³ factor @ E > 100 GeV
 - mainly rejected using the PSD and the 1st layer of STK
 - key problem is the back scattering at high energy

Photons: selection

- Event topology
- Random Forest + Convolutional Neural Networks

Photons: counts maps

The DAMPE gamma-ray sky

Photons: pulsars

Algorithms to resolve gamma-rays from charged cosmic rays

[Res. Astron. Astrophys. 18, 27 (2018)]

 Geminga, IC443 and Crab pulsars

profile (T~237 ms)

Photons: blazars variability

- DAMPE detection of gamma-ray variability of some blazars:
 - CTA 102
 - 3C 454.3
 - 3C 279

•

DAMPE detection of variable GeV gamma-ray emission from blazar CTA 102

ATel #9901; Zun-Lei Xu (PMO), Micaela Caragiulo (Bari), Jin Chang (PMO), Kai-Kai Duan (PMO), Yi-Zhong Fan (PMO), Fabio Gargano (Bari), Shi-Jun Lei (PMO), Xiang Li (PMO), Yun-Feng Liang (PMO), M. Nicola Mazziotta (Bari), Zhao-Qiang Shen (PMO), Meng Su (HKU/PMO), Andrii Tykhonov (Geneva), Qiang Yuan (PMO), Stephan Zimmer (Geneva), on behalf of the DAMPE collaboration, and Bin Li (PMO) and Hai-Bin Zhao (PMO) on behalf of the CNEOST group. on 27 Dec 2016; 01:02 UT Credential Certification: Zun-Lei Xu (xuzl@pmo.ac.cn)

Participation to multi-messenger searches

- DAMPE participates to multi-messenger search of γ counterparts
- Detection of gamma-ray source TXS 0506+056 (possibly associated with the neutrino event IceCube-170922A)
 - no clear variability detected due to limited statistics
 - ongoing monitoring of the source

Summary

- DAMPE is working extremely well since ~3 years
- e⁻+e⁺ spectrum precisely measured up to TeV energies
 - a clear spectral break has been directly measured at ~1 TeV
 - improved precision of the e⁻+e⁺ spectrum behavior and structures may shed light on nearby sources, anisotropies, DM
- Proton, Helium and nuclei measurements are ongoing
- Photon detection capability assessed
 - accumulating more statistics to profit the excellent energy resolution at high energy

The DArk Matter Particle Explorer

Thank you

The DArk Matter Particle Explorer

Backup

The Silicon TracKer (STK)

- 95×95×0.32 mm³ Silicon Strip Detectors (SSD) 768 strips
- 1 ladder composed by 4 SSDs
- 16 ladders per layer (76×76 cm²)
- 12 layers (6x + 6y)

Analog Readout of each second strip: 384 channels / SSD- Ladder Charge sharing

The CALOrimeter

- 14 alternate orthogonal layers, each of 22 BGO bars
 - Total 308 bars
 - Dimensions of a bar: 2.5×2.5×60 cm³
 - Total depth ~32 X₀, ~1.6 λ

- One PMT at each BGO bar end
 - Two PMTs per bar, total 616 PMTs

- Electronics boards attached to each side of the module
- Deposited energy ranges: 2 MeV 2 TeV and 10 MeV 5 TeV

The PSD and the NUD

PSD

- 2 layers (x and y), each is 82×82 cm²
- 88×2.8×1 cm³ scintillator bars
- Staggered by 0.8 cm in each layer

NUD

- 4 large area boron-doped plastic scintillators, 30×30×1 cm³ each
- Wrapped in Al for photon reflection

Beam tests at CERN

- 14 days @ PS, 29/10-11/11 2014
 - e @ 0.5, 1, 2, 3, 4, 5 GeV/c
 - p @ 3.5, 4, 5, 6, 8, 10 GeV/c
 - π⁻ @ 3, 10 G.eV/c
 - γ @ 0.5-3 GeV/c
- 8 days @ SPS, 12/11-19/11 2014
 - e @ 5, 10, 20, 50, 100, 150, 200, 250 GeV/c
 - p @ 400 GeV/c (SPS primary beam)
 - γ @ 3-20 GeV/c
 - μ@ 150 GeV/c,
- 17 days @ SPS, 16/03-10/04 2015
 - Fragments @ 66.67, 88.89, 166.67 GeV/c
 - Argon @ 30A, 40A, 75A GeV/c
 - p @ 30, 40 GeV/c
- 21 days @ SPS, 10/06-01/07 2015
 - p @ 400 GeV/c (SPS primary beam)
 - e @ 20, 100, 150 GeV/c
 - γ @ 50, 75 , 150 GeV/c
 - μ@150 GeV /c
 - π⁺ @ 10, 20, 50, 100 GeV/c
- 6 days @ SPS, 20/11-25/11 2015
 - Pb @ 30A GeV/c (and fragments)

The DAMPE triggers

Trigger Type	Logic	Energy Threshold	Pre-scale factor
HE	L1_P_dy5	$\sim 10 \text{ MIPs}$	
	& L2_P_dy5	$\sim 10 \text{ MIPs}$	1
	& L3_P_dy5	$\sim 10 \text{ MIPs}$	
	& L4_N_dy8	$\sim 2 \text{ MIPs}$	
MIPs (Type I)	L3_P_dy8	$\sim 0.4 \text{ MIPs}$	4 (low latitude($\pm 20^\circ$))
	& L11_P_dy8	$\sim 0.4 \text{ MIPs}$	
	& L13_P_dy8	$\sim 0.4 \text{ MIPs}$	Turn Off (other region)
MIPs (Type II)	L4_P_dy8	$\sim 0.4 \text{ MIPs}$	4 (low latitude($\pm 20^\circ$))
	& L12_P_dy8	$\sim 0.4 \text{ MIPs}$	
	& L14_P_dy8	$\sim 0.4 \text{ MIPs}$	Turn Off (other region)
LE	L1_N_dy8	$\sim 0.4 \text{ MIPs}$	
	& L2_N_dy8	$\sim 0.4 \text{ MIPs}$	8 (low latitude($\pm 20^\circ$))
	& L3_N_dy8	$\sim 2 \text{ MIPs}$	
	& L4_N_dy8	$\sim 2 \text{ MIPs}$	64 (other region)
Unbiased	(L1_P_dy8 & L1_N_dy8)	$\sim 0.4 \text{ MIPs} \sim 0.4 \text{ MIPs}$	512 (low latitude($\pm 20^\circ$))
	(L2_P_dy8 & L2_N_dy8)	$\sim 0.4 \text{ MIPs} \sim 0.4 \text{ MIPs}$	2048 (other region)

STK alignment

- STK alignment is performed once every two weeks
 - MIPs (non-showering particles) are used to correct the alignment
 - a spatial resolution < 40 μm on central STK planes is achieved

Stability of detectors

P. Fusco – The DAMPE Experiment – ICCPA 2018 – October 25, 2018

33

MIP calibration

Energy calibration with MIPs

Photons: acceptance and rates

- Selection based on Convolutional Neural Networks + Random Forest
- Other PID algorithms are under study to decrease the contamination from electrons at a level below the Extra Galactic Background emission