IV International Conference on Particle Physics and Astrophysics

A study of d*(2380) resonance

Yubing Dong

Institute of High Energy Physics (IHEP),

Chinese Academy of Sciences

Collaborators: Qifang Lyu, Pengnian Shen, Fei Huang, Zongye Zhang

IV International conference of particle physics and astrophysics

Content

- 1. Observation
- 2. Interpretations
- 3. Compact 6-quark dominanted structure in chiral constituent quark model
 - (A) Mass and wave function
 - (B) Strong decays
 - (C) Charge distribution
- 4. Summary and remarks

Ordinary or exotic

Charmonium-like particles -

Exotic XYZ states

10/26/2018

4

(New resonances, Five-Quark)

Pentaguark states Pc(4380)+, & Pc(4450)+

Observation of J/ ψ p resonances consistent with pentaquark states

(b)

1, Observation of d*(2380)

<u>cerncourier.com/cws/article/cern</u> /57836 (2014)

VOLUME 54 NUMBER 6 JULY/AUGUST 2014

ERNCOUR

INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS

Experiments at the <u>Julich</u> Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and ouantum nu to trail(I') = 0(3'). The structure, containing six valence quarks, constitutes a <u>dibaryon</u>, and could be either an exotic compact particle or a <u>hadronic</u> molecule. The result unswers the long trading question of whether there are more <u>eigenstates</u> in the two-baryon system than just the deuteron ground-state. This fundamental question has then awaiting an answer since at 10 st 1964, when first Freeman Dyson and later Robert Jaffe envisaged the possible existence of non-

Experiments at the Jülich Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and quantum numbers $I(J^P) = O(3^+)$Since 2009

Signals in np procese @ COSY

2π production processes

fusion 2π processes	p + d> 3 He + π^{+} + π^{-} d + d> 4 He + π^{0} + π^{0} d + d> 4 He + π^{+} + π^{-}	
Signals in other reactions @ COSY	Measured also in fusion reactions to helium isotopes: $p + d \longrightarrow {}^{3}He + \pi^{0} + \pi^{0}$	

Characters of $d^{(2380)} = 0 (3^{+})$

d* mass locates between ΔΔ and ΔNπ thresholds
 Effect from threshold is expected small

2. Possible interpretations d*(2380) $I(J^{P}) = 0(3^{+})$ Before COSY's observation •Other predictions • Consists with COSY's measurement Jaffe(77) Swart(78) Dyson(64) ----- symmetry analysis **Oka(80)** Thomas(83) ---- bag model Maltman(85) Yuan(99) ----- $\Delta\Delta + CC$ guark cluster model Goldman(89) Wang(95)..... ▲ After COSY's observation Hadronic model Quark model J.Ping (09/14)-10 coupled channels QM Gal (14) --- $\Delta N\pi$ F.Huang, Y.B.Dong et al. (14-18)--∆∆+CC QM Kukulin(15,16) - $D_{12}\pi$ -Bashkanov, Brodsky, Clement (13) -- ΔΔ+CC A. Compact 6q dominated exotic state B, $\Delta N\pi$ (or $D_{12}\pi$) resonant state S.L. Zhu (15) -----QCD Sum Rule

3. Compact 6q dominated d* (2380) in chiral constituent quark model (A)Mass and wave function PRC 60 (1999) 045203 CPC 39 (2015) 071001 SU(3) chiral QM + RGM approach

Model parameters: reproduce experimental data for NN systems---NN phase shifts, $BE_d^{exp't} = 2.22 MeV$

A Trial wavefunction: $I(J^P) = 0(3^+)$

 $\Psi_{6q} = \mathcal{A} \left[\phi_{\Delta}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \, \phi_{\Delta}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \, \eta_{\Delta\Delta}(\boldsymbol{r}) + \right]$ $C: \quad (0s)^3 \, [3]_{\text{orb}}, S = 3/2, I = 1/2, C = (11),$

 Δ :

 $n_{\Delta\Delta}$ (r) and n_{cc} (r) are not orthogonal

 $(0s)^{3}[3]_{\text{orb}}, S = 3/2, I = 3/2, C = (00),$

A Hadronization ---- Channel wave function:

 $\phi_{\rm C}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \phi_{\rm C}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \eta_{\rm CC}(\boldsymbol{r})]_{S=3, I=0, C=(00)}$

 $\Psi_{d^*} = |\Delta\Delta\rangle \,\chi_{\Delta\Delta}(r) + |\mathrm{CC}\rangle \,\chi_{\mathrm{CC}}(r)$

 $\chi_{\Delta\Delta}(\boldsymbol{r}) \equiv \left\langle \phi_{\Delta}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \, \phi_{\Delta}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \, | \, \Psi_{6q} \right\rangle,$

 $\chi_{\rm CC}(\boldsymbol{r}) \equiv \left\langle \phi_{\rm C}(\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \, \phi_{\rm C}(\boldsymbol{\xi}_4, \boldsymbol{\xi}_5) \, | \, \Psi_{6q} \right\rangle,$

The two components are orthogonal due to the quark exchange effect

Results:

Wave function **Binding energy** CPC 39 (2015) 071001 $\mathrm{BE}^{\mathbf{exp't}}_{\mathbf{d}^*} = 84\mathrm{MeV}$ $\mathrm{BE}_{\mathrm{d}^*}^{\mathrm{th}}=84\mathrm{MeV}$ d* WFs Ext. SU(3) (f/g=0) 1.2 $\Delta\Delta$ -CC $\Delta \Delta$ $\begin{array}{c} & & \Delta \Delta \ ^7 S_3 \\ & & \Delta \Delta \ ^7 D_3 \\ & & - - - CC \ ^7 S_3 \end{array}$ 0.9 (L=0,2) (L=0,2) $r * \psi(r) (fm^{-1/2})$ CC ⁷D₃ d* Binding 0.6 62.3 83.9 Energy(MeV) 0.3 31.22 98.01 $\Delta\Delta$ (L=0) Fraction 0.0 0.45 1.99 $\Delta\Delta$ (L=2) of Wave 1.5 3.0 4.5 6.0 7. 0.0 Function CC (L=0) r (fm) 68.33 0 (%) $\Delta: (0s)^3 [3]_{\text{orb}}, S = 3/2, I = 3/2, C = (00),$ CC (L=2) 0 0.00 $(0s)^{3}$ [3]_{orb}, S = 3/2, I = 1/2, C = (11),C:

Reason for the large component of CC (68%)

$$P_{36} = P_{36}^r P_{36}^{sfc}$$

$$\mathbf{I}(\mathbf{J}^{\mathbf{P}}) = \mathbf{0}(\mathbf{3}^+)$$

- 1). Intrinsic character of d* ----- <P₃₆^{sfc} > quark exchange effect of sfc large (negative:-4/9)
 - 2). Dynamical effect----(SI=30), OGE and vector meson exchange induced Δ - Δ short range interaction is attractive

Two cluster closer — large CC component
 d* deep bound and narrow width
 d* might be a 6q dominant state!

	Theor.(MeV)	Expt.(MeV)	
$d^* \to d\pi^+\pi^-$	16.8	16.7	
$d^* \to d\pi^0 \pi^0$	9.2	10.2	
$d^* \to pn\pi^+\pi^-$	20.6	21.8	
$d^* \to p n \pi^0 \pi^0$	9.6	8.7	
$d^* \to p p \pi^0 \pi^-$	3.5	4.4	
$d^* \to nn\pi^0\pi^+$	3.5	4.4	
$d^* \to pn$	8.7	8.7	
Total	71.9	74.9	

* Too large width for ($\Delta\Delta$) component only

$M_{d*}(\mathrm{MeV})$	$(100\%)\Delta\Delta$ 2374	Expt 2375	
Decay channel	Γ(MeV)	$\Gamma(MeV)$	
$d^* \rightarrow d\pi^0 \pi^0$	17.0	10.2	
$d^* \rightarrow d\pi^+\pi^-$	30.8	16.7	
Total	132.8	74.9	

Discussions:

* FSI is about 26~30%

* Isospin breaking factor

$$\frac{\Gamma(d^* \to d\pi^+ \pi^-)}{\Gamma(d^* \to d\pi^0 \pi^0)} \sim 1.8 \quad (1.6, 2.0)$$

$$\frac{\Gamma(d^* \to pn\pi^+\pi^-)}{\Gamma(d^* \to pn\pi^0\pi^0)} \sim 2.2 \quad (2.5, 2.5)$$

* All partial and total widths agree with data $\Gamma^{exp't} = 70 \sim 75 \, MeV$ $\Gamma^{th} \approx 72 \, MeV$

The narrow width is due to large CC component

single- π decay

• Experimental status

The WASA-@-COSY Collaborations, arXiv:1702.07212v1 [nucl-ex] PLB774 (2017), 599-607

Dash-dotted line illustrates a 10% d* resonance contribution

Upper limit of branching ratio for $d^*(2380) \rightarrow NN\pi$ is 9%.

This channel might serve as a test for different interpretations,

since the result of the $\Delta \pi N$ (or $D_{12}\pi$) is about 18%.

• Theoretical status

compact 6q dominated case:

PLB769 (2017) 223-226

Fig. 1. Six possible ways to emit pion only from the $\Delta\Delta$ component of d^* in the $d^* \rightarrow NN\pi$ decay process. The outgoing pion with momenta \vec{k} is emitted from Δ_2 . The other six sub-diagrams with pion emitted from Δ_1 are similar, and then are not shown here for reducing the size of the figure.

$$\begin{split} \Psi_{d^*} &= |\Delta\Delta\rangle \, \chi_{\Delta\Delta}(r) + |\text{CC}\rangle \, \chi_{\text{CC}}(r) \\ \Delta: \quad (0s)^3 [3]_{\text{orb}}, S = 3/2, I = 3/2, C = (00), \\ C: \quad (0s)^3 [3]_{\text{orb}}, S = 3/2, I = 1/2, C = (11), \end{split}$$

 $L = L_{\pi NN} + L_{\Delta N\pi}$ Intermediate states: (N, N*, Δ , Δ *) Low-lying resonances are considered

$$\frac{g_{\pi\Delta\Delta}^2}{4\pi} = \frac{1}{25} \frac{M_{\Delta}^2}{M_N^2} \frac{g_{\pi NN}^2}{4\pi}, \quad g_{\pi\Delta\Delta} \quad small$$

1, $C \rightarrow \Delta$, interaction should be color and isospin-dependent

2, $CC(SI=3,0) \rightarrow NN^{*}(1400)$, D-wave of OGE is required

The suppressions enable to ignore the contribution from the CC component in d*

Our prediction, 1% is compatible with the Exp't upper-limits

C, Form factors (charge distributions)

If the d^{*} is further confirmed by experiments, we believe that our interpretation is reasonable. Thus, it is a state with 6q structure dominant and moreover, the more information about the short range interaction is expected.

Thanks !

Decay widths

Three-body decay

Four-body decay

$$\Gamma_{d^{\bullet} \to d\pi^{0}\pi^{0}} = \frac{1}{2!} \int d^{3}k_{1} d^{3}k_{2} d^{3}p_{d}(2\pi) \delta^{3}(\vec{k}_{1} + \vec{k}_{2} + \vec{p}_{d})$$
$$\times \delta(\omega_{k_{1}} + \omega_{k_{2}} + E_{p_{d}} - M_{d^{\bullet}}) |\overline{\mathcal{M}}_{if}^{\pi^{0}\pi^{0}}|^{2}$$

$$\Gamma_{d^* \to p n \pi^0 \pi^0} = \frac{1}{2! 2!} \int d^3 k_1 d^3 k_2 d^3 p_1(2\pi) \delta(\Delta E) \\ \times |\overline{\mathcal{M}(k_1, k_2; p_1)}|^2$$

$$\mathcal{M}_{if}^{\pi^{0}\pi^{0}} = \frac{1}{\sqrt{3}} \sum_{i} F_{1}F_{2}k_{1,\mu}k_{2,\nu}I_{S}^{0}I_{I}^{0}C_{1\nu,1\mu}^{jm_{j}}C_{3m_{d^{*}},jm_{j}}^{1m_{d}}$$

$$\times \int d^{3}q \left[\frac{\chi_{d}^{*}(\vec{q} - \frac{1}{2}\vec{k}_{12})}{E_{\Delta}(q) - E_{N}(q - k_{1}) - \omega_{1}} + \frac{\chi_{d}^{*}(\vec{q} + \frac{1}{2}\vec{k}_{12})}{E_{\Delta}(q) - E_{N}(q - k_{2}) - \omega_{2}} + \frac{\chi_{d}^{*}(\vec{q} + \frac{1}{2}\vec{k}_{12})}{E_{\Delta}(-q) - E_{N}(-q - k_{1}) - \omega_{1}} + \frac{\chi_{d}^{*}(\vec{q} - \frac{1}{2}\vec{k}_{12})}{E_{\Delta}(-q) - E_{N}(-q - k_{1}) - \omega_{1}} \right] \chi_{d^{*}}(\vec{q})$$

$$\mathcal{M}(k_1,k_2;p_1) = \mathcal{M}^{\text{bare}}(k_1,k_2;p_1) \times \mathcal{I}$$

$$\mathcal{I} = \mathcal{J}^{-1}(k) = C(k^2) \frac{\sin \delta e^{i\delta}}{k}$$

$$\mathcal{M}^a(k_1,k_2;p_1) = \int d^3 p_2 d^3 q [\mathcal{H}S_f \mathcal{H}] \Psi_{d^*}(q)$$

$$\times \delta^3(\vec{p}_1 + \vec{k}_1 - \vec{q}) \delta(\vec{p}_2 + \vec{k}_2 + \vec{q})$$

$$= \int d^3 p_2 \delta^3(\vec{p}_1 + \vec{p}_2 + \vec{k}_1 + \vec{k}_2) [\mathcal{H}S_f \mathcal{H}]$$

$$\times \Psi_{d^*}(-\vec{p}_2 - \vec{k}_2)$$

$$d^* \to np\pi^0\pi^0 (np\pi^+\pi^-)$$

C, Form	f	actors	s (chai	rge d	istributio	ns)
Form factors:	25	5+1 r	elative t	o size	arXiv:1704.0	1253
Nucleon(1/2):	< 1	$N(p') \mid J_N^{\mu} \mid$	$N(p) >= \bar{U}_N$	$F_1(Q^2)$	$(Q^2)\gamma^\mu + i \frac{\sigma^{\mu\nu} q_\nu}{2M_N} F_2(Q)$	$^{2})\Big]U(p),$
	$G_E($	$(Q^2) = F_1(Q)$	$^{2}) - \eta F_{2}(Q^{2}),$	$G_M(Q^2)$	$=F_1(Q^2)+F_2(Q^2),$	
Breit frame	< N	$J(\vec{q}/2) \mid J_N^0 \mid$	$N(-\vec{q}/2) > =$	$(1+\eta)^{-1/2}$	$^{2}\chi_{s'}^{+}\chi_{s}G_{E}(Q^{2})$	
	< N	$J(\vec{q}/2) \mid \vec{J}_N \mid$	$N(-\vec{q}/2) > =$	$(1+\eta)^{-1/2}$	$^{2}\chi_{s'}^{+}\frac{\sigma \times q}{2M_{N}}\chi_{s}G_{M}(Q^{2}).$	
Deuteron(1):		$J^{\mu}_{jk}(p',p)$	$=\epsilon_{j}^{'*\alpha}(p')S_{\alpha}^{\mu}$	$\epsilon_{\beta}\epsilon_{k}^{\beta}(p)$		
		$S^{\mu}_{\alpha\beta} = - \Big[G$	$g_1(Q^2)g_{\alpha\beta} - G_2$	$_{3}(Q^2) \frac{Q_{\alpha}Q_{\beta}}{2m_D^2}$	$]P^{\mu} - G_2(Q^2)(Q_{\alpha}g^{\mu}_{\beta}$	$-Q_{\beta}g^{\mu}_{\alpha})$,
		$G_C(Q^2) =$	$G_1(Q^2) + \frac{2}{3}\eta$	$^{D}_{D}G_2(Q^2)$,	$G_M(Q^2) = G_2(Q^2)$),
		$G_Q(Q^2) =$	$G_1(Q^2) - G_2$	$(Q^2) + (1 +$	$\eta_D)G_3(Q^2) \; ,$	
Breit frame		$G_C(Q^2$)	$\frac{1}{3}\sum_{\lambda}$	$< p', \lambda \mid J^0 \mid p,$	$\breve{\lambda} >$.
10/26/2018			23			

C, Form factors (charge distributions)

