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INTRODUCTION AND OVERVIEW
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The investigation of the energy spectra of hydrogen muonic molecules is important

for muonic catalysis of nuclear fusion reactions. A calculation of fine and hyperfine

structure of muonic molecular ions as well as of higher order QED corrections allows us

to predict the rates of reactions of their formation and other parameters of the μCF cycle.

Note that there are several different approaches to the classification of bound states

in mesomolecular ions. One of them originates from adiabatic approach and involves a

pair of two quantum numbers J and ν, where J is rotational quantum number and ν is

vibrational quantum number.

One can introduce so-called “binding energy”:

where is reduced mass of tμ, n is principle quantum number of such bound state. For

(0,0), (0,1), (1,0) and (1,1) states n=1, while for the parity metastable P-state n=2.

For a given total energy of a particular state of a mesomolecular ion the sign of binding

energy defines whether the state is bound or not.

 Korobov V.I., Puzynin I.V. and Vinitsky S.I. Physics Letters B 196 (1987) 272-276.

 Frolov A.M. and Wardlaw D.M. Eur. Phys. J. D 63 (2011) 339–350.

 Aznabayev D.T., Bekbaev A. K., Ishmukhamedov I. S., and Korobov V. I. Physics of

Particles and Nuclei Letters 12 (2015) 689–694.
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PURPOSE

The aim of this work is to study the energy spectrum of three-particle

dtµ muonic molecular ion on the basis of variational approach.

Tasks:

1. Analylical calculation of diagonal and off-diagonal matrix elements of

kinetic energy, potential energy and overlap for all basis functions;

2. Writing computer code to solve bound state problem for three particles using

stochastic variational method with correlated Gaussian basis;

3. Calculation of the energy of the ground and excited states, including weakly-

bound states, of dtµ muonic molecular ion on the basis of variational

method.
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GENERAL FORMALISM 
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Let us consider a system of N particles. The Schrodinger equation in Jacobi

coordinates has the form:

In variational method the wave function of the system is presented as follows
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An upper bound for the energy of ground and excited states is given by the lowest 

eigenvalue of the generalized eigenvalue problem:
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GAUSSIAN BASIS FUNCTIONS

In variational approach with correlated Gaussian basis wave functions have the form:
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x Jacobi coordinates

center of mass coordinate

The diagonal elements of the (N-1)×(N-1) dimensional symmetric, positive definite

matrix A correspond to the nonlinear parameters of Gaussian expansion, and the off-

diagonal elements connect different relative coordinates thus representing the

correlations between particles.

The angular part of the basis wave function has the following form:
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We use the following order of particles:

1 2 3

 t d μ

JACOBI COORDINATES
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The Jacobi coordinates are related to the relative

particle coordinates as follows:

For the interparticle coordinates:
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The wave function of the ground state (L=0):

In the case of three nonidentical particles in P-state (L=1, where L is total angular

momentum of particles) there are three possible wave functions:
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ρ λ ελ

ρ λ ε ρ λ

Wave function of ground state (0,0) and 

excited state (0,1)

Wave function of               parity state

Wave functions of (1,0) and (1,1) states

The wave function of the excited state with total orbital angular momentum L = 1 is a

superposition of 𝛹10 and 𝛹01.

GAUSSIAN BASIS FUNCTIONS

1( 1)L

First two wave functions have "normal" spacial parity while the third one has the

"odd" parity . We investigate both of these cases.1( 1)L

( 1)L
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KOROBOV’S (EXPONENTIAL) APPROACH

The variational exponential expansion for arbitrary L, using the relative coordinates (r31, 

r32 and r21) is given in the form:
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where cil are linear parameters and        are nonlinear parameters. The notation         

is customary:
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For L = 1, there are two systems of angular functions:
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where k is the unit vector along the Z axis.

In these expressions, k is again the unit vector along the Z axis. The formulas for

averaging the matrix elements over the orientations of the Z axis are:
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GROUND STATE L=0
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Kinetic energy operator:

where:
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Matrix elements of kinetic energy:
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GROUND STATE L=0

Potential energy operator:

Matrix elements of potential energy:

Overlap matrix elements:
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EXCITED STATE L=1
2 2
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Matrix elements of potential energy:
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EXCITED STATE WITH          PARITY

Matrix elements of kinetic energy:
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THE PROGRAM

 For the numerical calculation of energy levels of three-particle Coulomb bound 

states the code in MATLAB is written. The program uses stochastic variational

approach with random optimization procedure for nonlinear variational parameters; 

 The program is based on the Fortran program by  K.Varga and Y.Suzuki;

 A number of changes were made compared to the Fortran program, including the 

ability to calculate states with nonzero L, more convenient variational parameters 

generation and various optimization changes;

 The main results of the calculation include energies of ground and excited states 

along with variational wave functions for each state. The program is capable of 

calculating L=0 and L=1;

 We are now working on improved calculation of (1,1) state and the ability to 

calculate various QED corrections such as relativistic and vacuum polarization 

corrections.

K. Varga, Y. Suzuki Computer Physics Communications 106 (1997) 157-168
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RESULTS AND COMPARISON

Bound state energy (0,0) tdμ :
-0.53859497048 (svm)
-0.53859497088 (Korobov)
-0.53859497170 (Frolov)

Bound state energy (1,1) tdμ :
-0.48197043950 (svm)
-0.48199152659 (Korobov)
-0.48199152705 (Frolov)

Bound state energy (0,1) tdμ :
-0.48805628731 (svm)
-0.48806535340 (Korobov)
-0.48806535421(Frolov)

Bound state energy (1,0) tdμ :
-0.52319145028 (svm)
-0.52319145093 (Korobov)
-0.52319145200 (Frolov)

1Bound state energy L=1, (-1) parity tdμ :
-0.12386781229 (svm)
-0.12386781255 (Korobov)

L

 A.M. Frolov, D.M. Wardlaw, Bound state spectra of three-body muonic molecular 

ions. // Eur. Phys. J. D, 2011, v. 63, p. 339-350.

(all energies are in muon atomic units) 
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