One-Loop Amplitudes of Charged Fermions in Constant Homogeneous Electromagnetic Field

Ilya Karabanov, Alexandra Dobrynina, Alexander Parkhomenko \& Lubov Vassilevskaya

Department of Theoretical Physics
P. G. Demidov Yaroslavl State University

The IV International Conference on Particle Physics and Astrophysics
National Research Nuclear University "MEPhI", Moscow, Russia, 22-26 October 2018

Outline

(1) Introduction
(2) Correlators in Constant Homogeneous Magnetic Field
(3) Correlators in the Crossed-Field Limit
(4) Applications of Correlators
(5) Conclusions

Introduction: General Case of Two-Point Correlator

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]

- Lagrangian density of local fermion interaction

$$
\mathcal{L}_{\mathrm{int}}(x)=\left[\bar{f}(x) \Gamma^{A} f(x)\right] J_{A}(x)
$$

- J_{A} - generalized current (photon, neutrino current, etc.)
- Γ_{A} - any of γ-matrices from the set $\left\{1, \gamma_{5}, \gamma_{\mu}, \gamma_{\mu} \gamma_{5}, \sigma_{\mu \nu}=i\left[\gamma_{\mu}, \gamma_{\nu}\right] / 2\right\}$
- Interaction constants are included into the current J_{A}

Introduction: General Case of Two-Point Correlator

- Two-point correlation function of general form

$$
\Pi_{A B}=\int d^{4} X \mathrm{e}^{-i(q X)} \operatorname{Sp}\left\{S_{\mathrm{F}}(-X) \Gamma_{A} S_{\mathrm{F}}(X) \Gamma_{B}\right\}
$$

- $S_{\mathrm{F}}(X)$ - Lorentz-invariant part of exact fermion propagator
- $X^{\mu}=x^{\mu}-y^{\mu}$ - integration variable
- Correlations of scalar, pseudoscalar, vector and axial-vector currents were studied by Borovkov et al. [Phys. At. Nucl. 62 (1999) 1601]
- Consider correlations of a tensor current with the other ones

Basic Tensors in Presence of Magnetic Field

- Minkowski space filled with external magnetic field is divided into two subspaces:
- Euclidean with the metric tensor $\Lambda_{\mu \nu}=(\varphi \varphi)_{\mu \nu}$; plane orthogonal to the field strength vector
- Pseudo-Euclidean with the metric tensor $\tilde{\Lambda}_{\mu \nu}=(\tilde{\varphi} \tilde{\varphi})_{\mu \nu}$
- Metric tensor of Minkowski space $g_{\mu \nu}=\tilde{\Lambda}_{\mu \nu}-\Lambda_{\mu \nu}$
- Dimensionless tensor of the external magnetic field and its dual

$$
\varphi_{\alpha \beta}=\frac{F_{\alpha \beta}}{B}, \quad \tilde{\varphi}_{\alpha \beta}=\frac{1}{2} \varepsilon_{\alpha \beta \rho \sigma} \varphi^{\rho \sigma}
$$

- Arbitrary four-vector $a^{\mu}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ can be decomposed into two orthogonal components

$$
a_{\mu}=\tilde{\Lambda}_{\mu \nu} a^{\nu}-\Lambda_{\mu \nu} a^{\nu}=a_{\| \mu}-a_{\perp \mu}
$$

- For the scalar product of two four-vectors one has

$$
\begin{gathered}
(a b)=(a b)_{\|}-(a b)_{\perp} \\
(a b)_{\|}=(a \tilde{\Lambda} b)=a^{\mu} \tilde{\Lambda}_{\mu \nu} b^{\nu}, \quad(a b)_{\perp}=(a \wedge b)=a_{a^{\mu}}{ }^{\mu} \Lambda_{\mu \underline{\underline{\underline{1}}}} b^{\nu}
\end{gathered}
$$

Propagator in the Fock-Schwinger Representation

- General representation of the propagator [Itzikson \& Zuber]

$$
G_{F}(x, y)=\mathrm{e}^{i \Omega(x, y)} S_{F}(x-y)
$$

- Lorentz non-invariant phase factor

$$
\Omega(x, y)=-e Q_{f} \int_{y}^{x} d \xi^{\mu}\left[A_{\mu}(\xi)+\frac{1}{2} F_{\mu \nu}(\xi-y)^{\nu}\right]
$$

- In two-point correlation function phase factors canceled

$$
\Omega(x, y)+\Omega(y, x)=0
$$

- Lorentz-invariant part of the fermion propagator $\left(\beta=e B\left|Q_{f}\right|\right)$

$$
\begin{aligned}
S_{\mathrm{F}}(X) & =-\frac{i \beta}{2(4 \pi)^{2}} \int_{0}^{\infty} \frac{d s}{s^{2}}\left\{(X \tilde{\Lambda} \gamma) \cot (\beta s)-i(X \widetilde{\varphi} \gamma) \gamma_{5}-\right. \\
& \left.-\frac{\beta s}{\sin ^{2}(\beta s)}(X \Lambda \gamma)+m_{f} s[2 \cot (\beta s)+(\gamma \varphi \gamma)]\right\} \times \\
& \times \exp \left(-i\left[m_{f}^{2} s+\frac{1}{4 s}(X \tilde{\Lambda} X)-\frac{\beta \cot (\beta s)}{4}(X \wedge X)\right]\right)
\end{aligned}
$$

Orthogonal Basis Motivated by Magnetic Field

- Correlators having rank non-equal to zero, should be decomposed in some orthogonal set of vectors
- In magnetic field, such a basis naturally exists

$$
\begin{aligned}
& b_{\mu}^{(1)}=(q \varphi)_{\mu}, \quad b_{\mu}^{(2)}=(q \tilde{\varphi})_{\mu} \\
& b_{\mu}^{(3)}=q^{2}(\wedge q)_{\mu}-(q \wedge q) q_{\mu}, \quad b_{\mu}^{(4)}=q_{\mu}
\end{aligned}
$$

- Arbitrary vector a_{μ} can be presented as

$$
a_{\mu}=\sum_{i=1}^{4} a_{i} \frac{b_{\mu}^{(i)}}{\left(b^{(i)} b^{(i)}\right)}, \quad a_{i}=a^{\mu} b_{\mu}^{(i)}
$$

- Third-rank tensor $T_{\mu \nu \rho}$ can be decomposed similarly

$$
\begin{gathered}
T_{\mu \nu \rho}=\sum_{i, j, k=1}^{4} T_{i j k} \frac{b_{\mu}^{(i)} b_{\nu}^{(j)} b_{\rho}^{(k)}}{\left(b^{(i)} b^{(i)}\right)\left(b^{(j)} b^{(j)}\right)\left(b^{(k)} b^{(k)}\right)} \\
T_{i j k}=T^{\mu \nu \rho} b_{\mu}^{(i)} b_{\nu}^{(j)} b_{\rho_{\rho}}^{(k)}
\end{gathered}
$$

Correlator of Vector and Tensor Currents

- Example: correlation function of vector and tensor currents
- Correlator of vector and tensor currents is rank-3 tensor
- Vector-current conservation and anti-symmetry of the tensor current reduce the number of independent coefficients in the basis decomposition to 18
- From them, four coefficients only are non-trivial
- Double-integral representation of coefficients is used

$$
\begin{aligned}
& \Pi_{i j k}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta\right)=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u Y_{i j k}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right) \\
& \quad \times \exp \left\{-i\left[m_{f}^{2} t-\frac{q_{\|}^{2}}{4} t\left(1-u^{2}\right)+q_{\perp}^{2} \frac{\cos (\beta t u)-\cos (\beta t)}{2 \beta \sin (\beta t)}\right]\right\}
\end{aligned}
$$

- Integration variables and relation between momenta squared

$$
t=s_{1}+s_{2}, u=\left(s_{1}-s_{2}\right) /\left(s_{1}+s_{2}\right) ; \quad q_{\|}^{2}=q^{2}+q_{\perp}^{2}
$$

Integrands of Vector-Tensor Correlator

$$
\begin{gathered}
Y_{114}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{141}^{(\mathrm{VT)}}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)==-m_{f} q_{\perp}^{2} q^{2} \frac{\beta t \cos (\beta t u)}{\sin (\beta t)} \\
Y_{223}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{232}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)= \\
=m_{f} q_{\perp}^{2}\left(q_{\|}^{2}\right)^{2} \frac{\beta t}{\sin (\beta t)}[\cos (\beta t)-\cos (\beta t u)] \\
Y_{224}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{242}^{(\mathrm{VT)}}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)= \\
=m_{f} q_{\|}^{2} \frac{\beta t}{\sin (\beta t)}\left[q_{\perp}^{2} \cos (\beta t)-q_{\|}^{2} \cos (\beta t u)\right] \\
Y_{334}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)=-Y_{343}^{(\mathrm{VT})}\left(q^{2}, q_{\perp}^{2}, \beta ; t, u\right)==-m_{f} q_{\perp}^{2} q_{\|}^{2}\left(q^{2}\right)^{2} \frac{\beta t \cos (\beta t u)}{\sin (\beta t)}
\end{gathered}
$$

- Choice of basic vectors is dictated by the conservation of the vector current and $Y_{4 j k}^{(\mathrm{VT})}$ vanish in this basis
- Anti-symmetry in last two indices are due to the tensor current

Crossed-Field Limit

- Field parameter vanishes $\quad\left(\beta_{f} \rightarrow 0\right)$
- As basic vectors, it is convenient to accept the following orthonormalized set

$$
\begin{aligned}
& b_{\mu}^{(1)}=\frac{e_{f}}{\chi_{f}}(q F)_{\mu}, \quad b_{\mu}^{(2)}=\frac{e_{f}}{\chi_{f}}(q \tilde{F})_{\mu} \\
& b_{\mu}^{(3)}=\frac{e_{f}^{2}}{\chi_{f} \sqrt{q^{2}}}\left[q^{2}(q F F q)_{\mu}-(q F F q) q_{\mu}\right], \quad b_{\mu}^{(4)}=\frac{q_{\mu}}{\sqrt{q^{2}}}
\end{aligned}
$$

- Dynamical parameter: $\chi_{f}^{2}=e_{f}^{2}(q F F q)=\beta_{f}^{2} q_{\perp}^{2}$
- Coefficients of the vector-tensor correlator in this basis:

$$
\begin{aligned}
& \Pi_{i j k}^{(V T)}\left(q^{2}, \chi_{f}\right)=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{d t}{t} \int_{0}^{1} d u Y_{i j k}^{(V T)}\left(q^{2}, \chi_{f} ; t, u\right) \\
& \times \exp \left\{-i\left[\left(m_{f}^{2}-\frac{q^{2}}{4}\left(1-u^{2}\right)\right) t+\frac{1}{48} \chi_{f}^{2}\left(1-u^{2}\right)^{2} t^{3}\right]\right\}
\end{aligned}
$$

Vector-Tensor Correlator Integrands in Crossed Fields

- Results for integrands in external electromagnetic crossed fields

$$
\begin{aligned}
& Y_{114}^{(\mathrm{VT})}=-Y_{141}^{(\mathrm{VT})}=-m_{f} \sqrt{q^{2}} \\
& Y_{223}^{(\mathrm{VT})}=-Y_{232}^{(\mathrm{VT})}=m_{f} \frac{\chi_{f}^{2} t^{2}}{2 \sqrt{q^{2}}}\left(1-u^{2}\right) \\
& Y_{224}^{(\mathrm{VT})}=-Y_{242}^{(\mathrm{VT})}=-m_{f} \sqrt{q^{2}}\left[1+\frac{\chi_{f}^{2} t^{2}}{2 q^{2}}\left(1-u^{2}\right)\right] \\
& Y_{334}^{(\mathrm{VT})}=-Y_{343}^{(\mathrm{VT})}=-m_{f} \sqrt{q^{2}}
\end{aligned}
$$

Applications of Correlators

- Polarization operator is related with correlator of two vector currents
- Contribution linear in the fermion AMM is related with correlator of vector and tensor currents
- Its influence on photon requires detail discussion

Conclusions

- Two-point correlators in presence of constant homogeneous external magnetic field are considered
- This analysis extended the previous one by inclusion of tensor currents into consideration
- The research of correlators of tensor fermionny current with the others allows to investigate the effects arising at the expense of the abnormal magnetic moment of fermion

