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Introduction: General Case of Two-Point Correlator

[M. Yu. Borovkov et al., Phys. At. Nucl. 62 (1999) 1601]

Lagrangian density of local fermion interaction

Lint(x) =
[
f̄ (x)ΓAf (x)

]
JA(x)

JA — generalized current (photon, neutrino current, etc.)
ΓA — any of γ-matrices from the set
{1, γ5, γµ, γµγ5, σµν = i [γµ, γν ] /2}
Interaction constants are included into the current JA
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Two-point correlation function of general form

ΠAB =

∫
d4X e−i(qX ) Sp {SF(−X ) ΓA SF(X ) ΓB}

SF(X ) — Lorentz-invariant part of exact fermion propagator
Xµ = xµ − yµ — integration variable
Correlations of scalar, pseudoscalar, vector and axial-vector
currents were studied by Borovkov et al. [Phys. At. Nucl. 62
(1999) 1601]
Consider correlations of a tensor current with the other ones



Basic Tensors in Presence of Magnetic Field

Minkowski space filled with external magnetic field is divided
into two subspaces:

Euclidean with the metric tensor Λµν = (ϕϕ)µν ;
plane orthogonal to the field strength vector
Pseudo-Euclidean with the metric tensor Λ̃µν = (ϕ̃ϕ̃)µν
Metric tensor of Minkowski space gµν = Λ̃µν − Λµν

Dimensionless tensor of the external magnetic field and its dual

ϕαβ =
Fαβ
B

, ϕ̃αβ =
1
2
εαβρσϕ

ρσ

Arbitrary four-vector aµ = (a0, a1, a2, a3) can be decomposed
into two orthogonal components

aµ = Λ̃µνaν − Λµνaν = a‖µ − a⊥µ

For the scalar product of two four-vectors one has

(ab) = (ab)‖ − (ab)⊥

(ab)‖ = (aΛ̃b) = aµΛ̃µνbν , (ab)⊥ = (aΛb) = aµΛµνbν



Propagator in the Fock-Schwinger Representation

General representation of the propagator [Itzikson & Zuber]

GF(x , y) = eiΩ(x ,y) SF(x − y)

Lorentz non-invariant phase factor

Ω(x , y) = −eQf

∫ x

y
dξµ

[
Aµ(ξ) +

1
2
Fµν(ξ − y)ν

]
In two-point correlation function phase factors canceled

Ω(x , y) + Ω(y , x) = 0
Lorentz-invariant part of the fermion propagator (β = eB|Qf |)

SF(X ) = − iβ
2(4π)2

∞∫
0

ds
s2

{
(X Λ̃γ) cot(βs) − i(X ϕ̃γ)γ5 −

− βs
sin2(βs)

(XΛγ) + mf s [2 cot(βs) + (γϕγ)]

}
×

× exp
(
−i
[
m2

f s +
1
4s

(X Λ̃X ) − β cot(βs)

4
(XΛX )

])



Orthogonal Basis Motivated by Magnetic Field

Correlators having rank non-equal to zero, should be
decomposed in some orthogonal set of vectors
In magnetic field, such a basis naturally exists

b(1)
µ = (qϕ)µ, b(2)

µ = (qϕ̃)µ

b(3)
µ = q2 (Λq)µ − (qΛq) qµ, b(4)

µ = qµ

Arbitrary vector aµ can be presented as

aµ =
4∑

i=1

ai
b(i)
µ

(b(i)b(i))
, ai = aµb(i)

µ

Third-rank tensor Tµνρ can be decomposed similarly

Tµνρ =
4∑

i ,j ,k=1

Tijk
b(i)
µ b(j)

ν b(k)
ρ

(b(i)b(i)) (b(j)b(j)) (b(k)b(k))
,

Tijk = Tµνρb(i)
µ b(j)

ν b(k)
ρ .



Correlator of Vector and Tensor Currents

Example: correlation function of vector and tensor currents
Correlator of vector and tensor currents is rank-3 tensor
Vector-current conservation and anti-symmetry of the tensor
current reduce the number of independent coefficients in the
basis decomposition to 18
From them, four coefficients only are non-trivial
Double-integral representation of coefficients is used

Π
(VT)
ijk (q2, q2

⊥, β) =
1

4π2

∞∫
0

dt
t

1∫
0

du Y (VT)
ijk (q2, q2

⊥, β; t, u)

× exp

{
−i

[
m2

f t −
q2
‖

4
t (1 − u2) + q2

⊥
cos(βtu) − cos(βt)

2β sin(βt)

]}

Integration variables and relation between momenta squared
t = s1 + s2, u = (s1 − s2)/(s1 + s2); q2

‖ = q2 + q2
⊥



Integrands of Vector-Tensor Correlator

Y (VT)
114 (q2, q2

⊥, β; t, u) = −Y (VT)
141 (q2, q2

⊥, β; t, u) == −mf q2
⊥ q2 βt cos(βtu)

sin(βt)

Y (VT)
223 (q2, q2

⊥, β; t, u) = −Y (VT)
232 (q2, q2

⊥, β; t, u) =

= mf q2
⊥ (q2

‖)2 βt
sin(βt)

[cos(βt) − cos(βtu)]

Y (VT)
224 (q2, q2

⊥, β; t, u) = −Y (VT)
242 (q2, q2

⊥, β; t, u) =

= mf q2
‖

βt
sin(βt)

[
q2
⊥ cos(βt) − q2

‖ cos(βtu)
]

Y (VT)
334 (q2, q2

⊥, β; t, u) = −Y (VT)
343 (q2, q2

⊥, β; t, u) == −mf q2
⊥ q2

‖ (q2)2 βt cos(βtu)

sin(βt)

Choice of basic vectors is dictated by the conservation of the
vector current and Y (VT)

4jk vanish in this basis
Anti-symmetry in last two indices are due to the tensor current



Crossed-Field Limit

Field parameter vanishes (βf → 0)
As basic vectors, it is convenient to accept the following
orthonormalized set

b(1)
µ =

ef

χf
(qF )µ, b(2)

µ =
ef

χf
(qF̃ )µ

b(3)
µ =

e2
f

χf
√

q2

[
q2 (qFFq)µ − (qFFq) qµ

]
, b(4)

µ =
qµ√
q2

Dynamical parameter: χ2
f = e2

f (qFFq) = β2
f q2
⊥

Coefficients of the vector-tensor correlator in this basis:

Π
(VT )
ijk (q2, χf ) =

1
4π2

∞∫
0

dt
t

1∫
0

du Y (VT )
ijk (q2, χf ; t, u)

× exp
{
−i
[(

m2
f −

q2

4
(1− u2)

)
t +

1
48
χ2

f (1− u2)2t3
]}



Vector-Tensor Correlator Integrands in Crossed Fields

Results for integrands in external electromagnetic crossed fields

Y (VT)
114 = −Y (VT)

141 = −mf
√

q2

Y (VT)
223 = −Y (VT)

232 = mf
χ2

f t
2

2
√

q2

(
1− u2)

Y (VT)
224 = −Y (VT)

242 = −mf
√

q2
[
1 +

χ2
f t

2

2q2

(
1− u2)]

Y (VT)
334 = −Y (VT)

343 = −mf
√

q2



Applications of Correlators

Polarization operator is related with correlator of two vector
currents
Contribution linear in the fermion AMM is related with
correlator of vector and tensor currents
Its influence on photon requires detail discussion



Conclusions

Two-point correlators in presence of constant homogeneous
external magnetic field are considered
This analysis extended the previous one by inclusion of tensor
currents into consideration
The research of correlators of tensor fermionny current with
the others allows to investigate the effects arising at the
expense of the abnormal magnetic moment of fermion


