# Lepton Flavour Universality tests at LHCb

### Pavel Krokovny on behalf of the LHCb Collaboration



Budker INP & Novosibirsk University



### Outline:

- Introduction
- LHCb detector & data taking
- $b \rightarrow c \mid v$
- b → s |+|-
- Summary





# Lepton Flavour Universality

In the Standard Model (SM) quarks and leptons exist in 3 generations of 2 members each. SM assumes Lepton Flavour Universality (LFU):

- the equal gauge couplings for all 3 generations
- difference is only due to mass

LFU is established in the decay of light mesons, e.g.  $\pi \rightarrow \ell \nu$ ,  $K \rightarrow \pi \ell \ell$ ,  $J/\psi \rightarrow \ell \ell$ LEP measurements of decays  $W \rightarrow \ell \nu$  and  $Z \rightarrow \ell \ell$  confirm LU, however there is some tension in  $W \rightarrow \tau \nu$ 

Some SM extensions include particles that can cause LUV and/or LFV (e.g. LQ, Z') Processes with  $3^{rd}$  generation of quarks and leptons (B and  $\tau$ ) are prominent for LFU violation search:

- Lower experimental constraints
- Stronger couplings to 3rd generation predicted by BSM theories foreseeing LFU violation



## LFU in b decays

### Tree-level decays $b \rightarrow c\ell v$ :

- abundant
- very well known in the SM
- BSM theories predict enhanced coupling with 3rd generation  $\rightarrow$ 
  - $\rightarrow$  interested in testing  $\tau$  against  $\mu$  / e



- forbidden at tree-level in SM
- sensitive to NP contributions in loops









# LHCb performance

- Momentum resolution: 0.4 0.6% at 5 100 GeV
- Muon ID efficiency: 97 % with 1-3 %  $\pi \,{\rightarrow}\,\mu$  mis-ID probability
- Electron ID efficiency: 90% with 4% h  $\rightarrow$  e mis-ID probability
- Kaon ID efficiency: 95% with 5 %  $\pi \rightarrow$  K mis-ID probability

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018





Acceptance:  $2 < \eta < 5$ 

1) Commun. 208 35 -42 2) Int. J. Mod. Phys. A 30 (2015) 153022



## LFU in semileptonic b decays



Measurement of ratios of branching fractions allows to

- cancel |V<sub>cb</sub>| dependence
- partially cancel out model uncertainties
- reduce experimental systematic uncertanties



- $\rightarrow$  Hadronic uncertainties cancel to large extent in the ratio
- $\rightarrow$  Difference from unity due to different lepton masses

- First deviation from SM was observed by BaBar and Belle
- LHCb performed two independent measurements using  $-\tau^{-} \rightarrow \mu^{-}\nu_{\tau}\overline{\nu}_{\mu}$  [PRL 115 (2015) 111803]
  - $τ^- → π^- π^+ π^- ν_{\tau}$  [PRD 97 (2018) 072013]



# $R_{_{D^{\ast}}}$ in muonic $\tau$ decays

- $\tau$  reconstructed by  $\tau^- \rightarrow \mu^- \nu_{\tau} \overline{\nu}_{\mu}$
- Both channels have the same final state ( $K\pi\pi\mu$ )
- Separation using three kinematic parameters:
  - $\geq E_{\mu}^{*} = E_{\mu} \text{ in } \overline{B}^{0} \text{ rest frame}$

$$\sim m_{\rm miss}^2 = (p_{\rm B0} - p_{\rm D*} - p_{\mu})^2$$

$$q^2 = (p_{B0} - p_{D^*})^2$$

• Approximate  $p_{B0}$  using >  $\overline{B}^0$  flight direction

$$(p_{B0})_{z} = m_{B}/m_{reco} (p_{reco})_{z}$$





# $R_{_{D^{\ast}}}$ in muonic $\tau$ decays

- Yields are extracted with a 3D binned ML fit in  $E_{u}^{*}$ ,  $m_{miss}^{2}$ ,  $q^{2}$
- Templates for the signal, normalization and backgrounds are obtained on MC and checked against control samples



- $R_{D*} = 0.336 \pm 0.027$  (stat)  $\pm 0.030$  (syst)  $2\sigma$  above SM
- Main background: Partially reconstructed and mis-ID decays
- Main systematic: Size of the simulated sample

#### Phys. Rev. Lett. 115, 111803 (2015)



# $R_{D^*}$ in hadronic $\tau$ decays

 $\tau$  reconstructed by  $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$  independent from  $R_{D^*}$  muonic



- Partial cancellation of experimental systematic uncertainties
- Main background:
  - $B^0 \rightarrow D^* \pi \pi \pi X$ , suppressed with  $\tau$  decay time,  $t_{\tau}$
  - B  $\rightarrow$  DD<sub>(s)</sub>X, suppressed with BDT



# $R_{_{D^{\ast}}}$ in hadronic $\tau$ decays

• Yields are extracted by a binned ML fit on  $q^2$ , BDT and  $t_{\tau}$ 



- $R_{D^*} = 0.291 \pm 0.019 \text{ (stat)} \pm 0.026 \text{ (syst)} \pm 0.013 \text{ (ext)}$ 1 $\sigma$  above SM Phys. Rev. Lett. 120, 181802 (2018)
- Main systematic: Size of the simulated sample
- LHCb average:  $R_{D^*} = 0.310 \pm 0.016$  (stat)  $\pm 0.022$  (syst) 2.2 $\sigma$  above SM



## $R_{D^*}$ results



- Measurements of  $R_{D}$  and  $R_{D*}$  are consistent with each other
- Combined result is  $3.8\sigma$  above SM prediction



# SM prediction of $R_{_{J\!/\!\psi}}$

h

Test of LFU in  $b \rightarrow c\ell v$  decays with a different spectator quark using large B<sup>+</sup><sub>c</sub> sample available at LHCb

$$R_{J/\psi} \equiv \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} \stackrel{\text{SM}}{\in} [0.25, 0.28]$$

Interval is due to form factor uncertainty [PLB 452 (1999) 129] [arXiv:hep-ph/0211021] [PRD 73 (2006) 054024] [PRD 74 (2006) 074008]

Lattice calculation is in progress

 $\overline{c}$ 



 $R_{J/\psi}$  results

### $\tau$ reconstructed by $\tau^- \rightarrow \mu^- \nu_{\tau} \overline{\nu}_{\mu}$ Analysis strategy as in $R_{D^*} + t_{\tau}$ as 4<sup>th</sup> discriminating variable





## LFU tests in $b \rightarrow s\ell\ell$



Use double ratio to reduce systematic effects:

$$R_{H} \equiv \frac{\mathcal{B}(B \to K \ \mu^{+} \mu^{-})}{\mathcal{B}(B \to K \ (J/\psi \to \mu^{+} \mu^{-}))} \cdot \frac{\mathcal{B}(B \to K \ (J/\psi \to e^{+} e^{-}))}{\mathcal{B}(B \to K \ e^{+} e^{-})}$$

## Measurement of $R_{\kappa^*}$

LHC





- Most precise measurement to date
- Compatible with BaBar and Belle
- Statistically limited by the electron sample
- BIP [EPJC 76 (2016) 440] CDHMV [JHEP 04 (2017) 016] EOS [PRD 95 (2017) 035029] flav.io [EPJC 77 (2017) 377] JC [PRD 93 (2016) 014028] BaBar [PRD 86 (2012) 032012]
- Belle [PRL 103 (2009) 171801]





 $R_{\kappa(*)}$  global fit



- Combination of  $R_{_{K^*}}$  ,  $R_{_K}$  and [PRL 118 (2017) 111801] is  ${\sim}4\sigma$  from SM
- $b \rightarrow s\mu^{+}\mu^{-}$  BR and angular obs. are in agreement with LFU tests
- Considered together the tension with SM further increases



## Prospects for LFU tests at LHCb

LHCb aims to perform complementary LFU tests:

- b  $\rightarrow$  c $\ell v$  transitions:
  - $R_{\Lambda^*},\,R_{_{Ds}}$  ,  $R_{_{Ds}*}$  and others
- b  $\rightarrow$  u $\ell v$  transitions:

− 
$$R_{pp}^{-}$$
 = B(B<sup>+</sup> → ppτ ν) / B(B<sup>+</sup> → ppμν) and others

• b  $\rightarrow$  sll transitions:

– R<sub>Ks</sub> , R<sub>K\*+</sub> , R<sub>Kππ</sub>, R<sub>pK</sub>, R<sub> $\phi$ </sub>, R<sub> $\Lambda$ </sub>, direct fit to  $\Delta C_{9}^{\mu,e}$  and others

⇒ Update of  $R_{K}$ ,  $R_{K*}$ ,  $R_{D*}$  and  $R_{J/\psi}$  with Run 2 data is currently on-going. 4 times more statistics: expected improvement on both statistical and systematic uncertainties



## Conclusion

- > Tests of LFU in heavy flavour physics present a tension with the SM predictions:
  - 3.4  $\sigma$  from angular distributions of  $B^0 \rightarrow K^{*0} \ \mu^+ \mu^-$
  - Measurements of ratios of branching fractions in both  $b \to c \ell \nu$  and  $b \to s \ell^+ \ell^-$ 
    - 3.8 $\sigma$  tension in  $R_{_D}$  and  $R_{_{D^*}}$  when combining BaBar, Belle and LHCb
    - 2.5 $\sigma$  below SM prediction in  $R_{_{K(*)}}$  at central  $q^2$
- → Anomalies in both  $b \rightarrow c\ell v$  and  $b \rightarrow s\ell^+\ell^-$  decays could be described with same New Physics models
- LHCb continue testing the LFU hypothesis. Please stay tuned!



## Backup



## Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

NP models which explain the observed discrepancies in the measurement of R(K(\*)) w.r.t SM predictions, foresee anomalous behaviors also in the angular distribution of the decay  $B^0 \rightarrow K^{*0}\mu^+\mu^-$ 

Decay amplitude can be described using  $q^2$  and three angles:  $\theta_1$ ,  $\theta_K$ ,  $\phi$ :





### Decay amplitude of $B^0 \to K^{*0} \mu^+ \mu^-$

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{d\bar{\Omega}dq^2} = \frac{9}{32\pi} [\frac{3}{4}(1-F_L)\sin^2\theta_k + F_L\cos^2\theta_k + \frac{1}{4}(1-F_L)\sin^2\theta_k\cos2\theta_\ell - F_L\cos^2\theta_k\cos2\theta_\ell + \frac{1}{4}(1-F_L)\sin^2\theta_k\cos2\theta_\ell - F_L\cos^2\theta_k\cos2\theta_\ell + S_3\sin^2\theta_k\sin^2\theta_\ell\cos2\phi + \frac{1}{4}A_{FB}\sin2\theta_k\sin2\theta_\ell\cos\phi + \frac{1}{5}\sin2\theta_k\sin2\theta_\ell\cos\phi + \frac{4}{3}A_{FB}\sin^2\theta_k\cos\theta_\ell + S_7\sin2\theta_k\sin\theta_\ell\sin\phi + S_8\sin2\theta_k\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_k\sin^2\theta_\ell\sin2\phi],$$



24



The  $P_5$ ' anomaly

Angular observable:

$$P_5' \equiv S_5 / \sqrt{F_L (1 - F_L)}$$







## ATLAS and CMS results on $P_5'$



ATLAS measurement differs by  $2.7\sigma$  from the SM prediction CMS results are consistent with SM prediction and other measurements



# Measurement of $R_{D^*}$

- B factories
- $e^+e^- \rightarrow Y(4S) \rightarrow B^+B^-(B^0\overline{B}{}^0)$ 
  - Reconstruction of other B
  - Clean signal but low efficiency



### LHCb

- Large boost, flight direction determined by PV & SV
- Huge B production





# $R_{_{D^{\ast}}}$ in hadronic $\tau$ decays

Main systematic uncertainties due to:

- Size of simulated sample
- Shape of the background  $B \rightarrow D^{*-}D_{s}^{+}X$
- $D_{(s)}^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}X$  decay mode. BESII future measurement will reduce it. Improvement as well of the upgraded ECAL
- Branching fraction of normalisation mode  $B^0 \rightarrow D^* \pi^+ \pi^- \pi^+$  known with ~4% precision. Belle II can measure it precisely



