Recent results of ultrahigh-energy cosmic rays observed with the Telescope Array Experiment

Carlor Ci

Toshihiro Fujii for the Telescope Array Collaboration Institute for Cosmic Ray Research, University of Tokyo <u>fujii@icrr.u-tokyo.ac.jp</u> ICPPA- 2018, October 26th, 2018

R.U. ABBASI,¹ M. ABE,² T. ABU-ZAYYAD,¹ M. ALLEN,¹ R. AZUMA,³ E. BARCIKOWSKI,¹ J.W. BELZ,¹ D.R. BERGMAN,¹ S.A. BLAKE,¹ R. CADY,¹ B.G. CHEON,⁴ J. CHIBA,⁵ M. CHIKAWA,⁶ A. DI MATTEO,⁷ T. FUJII,⁸ K. FUJITA,⁹ M. FUKUSHIMA,^{8,10} G. FURLICH,¹ T. GOTO,⁹ W. HANLON,¹ M. HAYASHI,¹¹ Y. HAYASHI,⁹ N. HAYASHIDA,¹² K. HIBINO,¹² K. HONDA,¹³ D. IKEDA,⁸ N. INOUE,² T. ISHII,¹³ R. ISHIMORI,³ H. ITO,¹⁴ D. IVANOV,¹ H.M. JEONG,¹⁵ S. JEONG,¹⁵ C.C.H. JUI,¹ K. KADOTA,¹⁶ F. KAKIMOTO,³ O. KALASHEV,¹⁷ K. KASAHARA,¹⁸ H. KAWAI,¹⁹ S. KAWAKAMI,⁹ S. KAWANA,² K. KAWATA,⁸ E. KIDO,⁸ H.B. KIM,⁴ J.H. KIM,¹ J.H. KIM,²⁰ S. KISHIGAMI,⁹ S. KITAMURA,³ Y. KITAMURA,³ V. KUZMIN,^{17,*} M. KUZNETSOV,¹⁷ Y.J. KWON,²¹ K.H. LEE,¹⁵ B. LUBSANDORZHIEV,¹⁷ J.P. LUNDQUIST,¹ K. MACHIDA,¹³ K. MARTENS,¹⁰ T. MATSUYAMA,⁹ J.N. MATTHEWS,¹ R. MAYTA,⁹ M. MINAMINO,⁹ K. MUKAI,¹³ I. MYERS,¹ K. NAGASAWA,² S. NAGATAKI,¹⁴ R. NAKAMURA,²² T. NAKAMURA,²³ T. NONAKA,⁸ H. ODA,⁹ S. OGIO,⁹ J. OGURA,³ M. OHNISHI,⁸ H. OHOKA,⁸ T. OKUDA,²⁴ Y. OMURA,⁹ M. ONO,¹⁴ R. ONOGI,⁹ A. OSHIMA,⁹ S. OZAWA,¹⁸ I.H. PARK,¹⁵ M.S. PSHIRKOV,^{17,25} J. REMINGTON,¹ D.C. RODRIGUEZ,¹ G. RUBTSOV,¹⁷ D. RYU,²⁰ H. SAGAWA,⁸ R. SAHARA,⁹ K. SAITO,⁸ Y. SAITO,²² N. SAKAKI,⁸ N. SAKURAI,⁹ L.M. SCOTT,²⁶ T. SEKI,²² K. SEKINO,⁸ P.D. SHAH,¹ F. SHIBATA,¹³ T. SHIBATA,⁸ H. SHIMODAIRA,⁸ B.K. SHIN,⁹ H.S. SHIN,⁸ J.D. SMITH,¹ P. SOKOLSKY,¹ B.T. STOKES,¹ S.R. STRATTON,^{1,26} T.A. STROMAN,¹ T. SUZAWA,² Y. TAKAGI,⁹ Y. TAKAHASHI,⁹ M. TAKAMURA,⁵ M. TAKEDA,⁸ R. TAKEISHI,¹⁵ A. TAKETA,²⁷ M. TAKITA,⁸ Y. TAMEDA,²⁸ H. TANAKA,⁹ K. TANAKA,²⁹ M. TANAKA,³⁰ S.B. THOMAS,¹ G.B. THOMSON,¹ P. TINYAKOV,^{17,7} I. TKACHEV,¹⁷ H. TOKUNO,³ T. TOMIDA,²² S. TROITSKY,¹⁷ Y. TSUNESADA,⁹ K. TSUTSUMI,³ Y. UCHIHORI,³¹ S. UDO,¹² F. URBAN,³² T. WONG,¹ M. YAMAMOTO,²² R. YAMANE,⁹ H. YAMAOKA,³⁰ K. YAMAZAKI,¹² J. YANG,³³ K. YASHIRO,⁵ Y. YONEDA,⁹ S. YOSHIDA,¹⁹ H. YOSHII,³⁴ Y. ZHEZHER,¹⁷ AND Z. ZUNDEL¹

¹High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, ² The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan

³Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

⁴Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Kore

⁵Department of Physics, Tokyo University of Science, Noda, Chiba, Japan

⁶Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan

⁷Service de Physique Thorique, Universit Libre de Bruxelles, Brussels, Belgium

⁸Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan

⁹Graduate School of Science, Osaka City University, Osaka, Osaka, Japan

¹⁰Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Kashiwa, Chiba, Japan

¹¹Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan ¹²Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan

¹³Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan

¹⁴Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan

¹⁵Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea

¹⁶Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan

Japan, USA, Russia, South Korea, Belgium, Czech republic

TELESCOPE ARRAY COLLABORATION

USA	¹⁷ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
ea	¹⁸ Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
	¹⁹ Department of Physics, Chiba University, Chiba, Chiba, Japan
	²⁰ Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea
	²¹ Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea
	²² Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan
[†] Tokyo,	²³ Faculty of Science, Kochi University, Kochi, Kochi, Japan
	²⁴ Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
	²⁵ Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia
	²⁶ Department of Physics and Astronomy, Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA
	²⁷ Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan
	²⁸ Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-shi,
	²⁹ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan
	³⁰ Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan
	³¹ National Institute of Radiological Science, Chiba, Chiba, Japan
	³² CEICO, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
	³³ Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul,
	³⁴ Department of Physics, Ehime University, Matsuyama, Ehime, Japan

* Deceased

Ultrahigh-energy cosmic rays (UHECRs)

R. Engel et al., Ann. Rev. Nucl. Part. Sci. 61 (2011) 467

- Cosmic microwave background radiation (CMBR) Cosmic Ray **Cosmic Ray** The most energetic particles in the Universe. $\sqrt{s_{pp}} > 100 \text{ TeV}$ Greisen-Zatsepin-Kuzmin (GZK) suppression is expected at the highest energies limited sources in nearby universe (50 -100 Mpc) less deflection in galactic/extragalactic magnetic fields **Correlation with nearby objects** (UHECR astronomy) Ş Telescope Array Experiment (700 km²)
 - Pierre Auger Observatory (3000 km²)

Ş

Telescope Array Experiment (TA) Largest cosmic ray detector in the Northern hemisphere ~ 700 km² at Utah, USA

<u>Surface detector array</u>

Fluorescence detector at a northern station Refurbished from HiRes experiment, Spherical mirror 5.2 m^2 , 256 PMTs/camera, 14 telescopes

Fluorescence detector + Surface detector array

Fluorescence detector at two southern stations 507 Scintillator, 1.2 km spacing Spherical segment mirror (6.8 m²) + 256 Photomultiplier tube(PMTs)/camera, 12 newly designed telescopes

Telescope Array Experiment (TA) Surface detector array (SD) Fluorescence detector (FD)

10-years steadily operation Surface detector array (SD) Fluorescence detector (FD) Clear moonless night ~95% duty operation ~10% duty operation

2008

Efficiency (%)

- Observe lateral density distribution
 - Charge density at 800 m, S₈₀₀ as energy indicator

Perpendicular distance from shower axis, [1200m]

Energy estimation by TA SD

A look up table made from Monte Carlo simulation

Event energy E_{TBL} = function of Som and zenith angle sec(A)

- *E*_{TBL} is rescaled by the FD reconstructed energy to estimate final energy of SD, *E*_{SD,fin}
- Ş
- $E_{\text{SD,final}} = E_{\text{TBL}}/1.27$,

Energy spectrum Entire sky of TA and Auger 10³⁸ E³ J(E) / (eV² km⁻² sr⁻¹ yr⁻¹ **.** . [.] . TA SD, Full Sky (E rescaled by -5.2%) Auger SD, Full Sky 10³⁷ (E rescaled by +5.2%) 19.2 19.4 19.6 19.8 20 19 log (E/eV) Common declination band ****** 10³⁴ • • • • • • • • • sr¹ yr¹ km⁻² eV^2 TA SD, -15.0° < δ < 24.8° (E rescaled by -5.2%) \sim Auger SD, -15.7° < δ < 24.8° Э(E) 10³⁷ (E rescaled by +5.2%) ш 19.6 19.8 19.2 20 19.4 19

log₁₀(E/eV)

Take away message

TA and Auger composition measurements (Xmax) agree within the systematics $18.2 < \log_{10}(E/eV) < 19.0$

> V. de Souza et al (Mass Composition WG), Proc. of ICRC 2017

11

No GZK y-ray and neutrino at the highest energies neutrino shower, $\theta = 78.6^{\circ}$ Anita-İ ARA 10^{-4} E² dN/dE GeV cm⁻² s⁻¹ sr⁻¹ IceCube Hires Pierre Auge RICE 12 y 10⁻⁵ TA SD down-going 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹ 10¹⁹ 10¹⁷ 10¹⁸ 10²⁰ 10¹⁶ 10²¹ E_{v}

G. I. Rubtsov et al., UHECR 2018

12

Interaction physics (vs~100 TeV)

$\sigma_{p-air}^{inel} = (567.0 \pm 70.5[stat]^{+29}_{-25}[sys])mb$

Phys. Rev. D92, 032007 (2015)

Phys. Rev. D 98, 022002 (2018)

10-years TA hotspot (E>57 EeV) 50 5 45 Data Cumulative events in the Hotspot 40 ±**2** σ 3 35 ±1σ 2 30 25 180 0 20 **Preliminary!** 15 -2 10 Preliminary! -3 O.S.=25° 2 6 8 Years χ^2 / ndf 5.577 / 9 Hotspot α***OFF** ON/OFF Search ON 3,669 ± 0.7734 Const. position (OFF) radius ratio (α) RA:144.3° 12.6 25° 0.10435 36 Dec: 40.3° (121)

58000

K. Kawata et al., UHECR 2018

Follow-up analysis of the Auger result of ApJL 853:L29 (2018)

Flux pattern analysis using starburst galaxies catalog

~1.1 σ compatible with 100% isotropic ~1.4 σ compatible with starbursts

A. di Matteo, T. Fujii, K. Kawata (UHECR2018 Poster) *Abbasi+2018, arXiv:1809.01573*

E. Kido et al., UHECR 2018

Ongoing upgrade: TAx4

SD assembling @ Akeno

180 TA SDs ready to be deployed

6 Auger SDs, [S. Quinn et al., ICRC 2017]

Summary and future perspectives

- Achieve 10-years observation with Telescope Array Experiment.
- Precise measurements on energy spectrum, mass composition and anisotropy at the northern hemisphere.
- Pioneering studies on the interaction physics beyond the LHC energies. Short-time burst showers correlating with lightings.

TAx4 will provide us a four-times statistics of UHECRs.

Backup

Y. Tsunesada in ICRC 2017

Energy spectrum

F. Fenu, M. Unger in ICRC 2017

Energy spectrum comparison

10% energy scale difference in TA/Auger

Fluorescence yield (FY)

Mass composition analysis using X_{max}

W. Hanlon ISVHECRI 2018, TA collab. ApJ, 858, 76(2018)

Take away message

TA and Auger composition measurements (Xmax) agree within the systematics $18.2 < \log_{10}(E/eV) < 19.0$

> V. de Souza et al (Mass Composition WG), Proc. of ICRC 2017

M. Unger et al., ICRC 2017, J. Bellido et al., ICRC 2017 23

Large/intermediate scale anisotropies

Auger dipole: E > 8 EeV, 6.5% dipole structure with 5.2 σ

Number of events	F coef	ourier ficient a_{α}	F coef	Fourier ficient b_{α}	Amplitude r_{α}	Phase φ _α (°)
81,701	0.00	1 ± 0.005	0.00)5 ± 0.005	0.005 +0.006 -0.002	80 ± 60
32,187	-0.008	8 ± 0.008	0.04	6 ± 0.008	0.047 +0.008 -0.007	100 ± 10
Dipol	е	Dipole	9	Dipole	Dip	ole
compone	nt d _z	compone	nt <i>d</i> ⊥	amplitude	d declinati	on $\delta_{\sf d}$ (°) a
-0.024 ±	0.009	0.006+0	.007 .003	$0.025\substack{+0.01\\-0.00}$	⁰ ₀₇ –75	+17 -8
-0.026 ±	0.015	0.060+0	.011 0.010	$0.065\substack{+0.01\\-0.00}$	³ 9 –24	+12 –13
	Number of events 81,701 32,187 Dipole compone -0.024 ± -0.026 ±	Number F of events coef $81,701$ 0.000 $32,187$ -0.008 Dipole dz -0.024 ± 0.009 -0.026 ± 0.015	Number of eventsFourier coefficient a_{α} $81,701$ 0.001 ± 0.005 $32,187$ -0.008 ± 0.008 Dipole component d_z Dipole compone -0.024 ± 0.009 0.006^{+0}_{-0} -0.026 ± 0.015 0.060^{+0}_{-0}	NumberFourierFourierof eventscoefficient a_{α} coefficient a_{α} $81,701$ 0.001 ± 0.005 0.007 $32,187$ -0.08 ± 0.008 0.044 DipoleDipoleDipole -0.024 ± 0.009 $0.006^{+0.007}_{-0.003}$ $0.006^{+0.007}_{-0.011}$	Number of eventsFourier coefficient a_a Fourier coefficient b_a $81,701$ 0.001 ± 0.005 0.005 ± 0.005 $32,187$ -0.002 ± 0.008 0.005 ± 0.008 Dipole component d_z Dipole component d_z Dipole component d_z -0.024 ± 0.009 0.006 ± 0.007 0.025 ± 0.007 -0.026 ± 0.015 0.060 ± 0.011 0.065 ± 0.007	Number of events $F \cup rier$ $A \longrightarrow plitude$ $coe ficient a_{\alpha}Coe ficient b_{\alpha}r_{\alpha}81,7010.001 \pm 0.0050.005 \pm 0.0050.005 \pm 0.00532,187-0.008 \pm 0.0080.04 \pm 0.0080.047 \pm 0.008DipoleDipoleDipoleDipoleDipole-0.024 \pm 0.0090.006 \pm 0.0070.025 \pm 0.010-750-0.026 \pm 0.0150.060 \pm 0.0010.065 \pm 0.010-24$

- ★ TA Hotspot: E > 57 EeV, 3.4σ (5.1 σ local) anisotropy [TA collab. ApJL, 790:L21 (2014)]
- TA (7 years, 109 events above 57 EeV) + Auger(10 years, 157 events above 57 EeV), 20° circle oversampling

• E > 57 EeV, no excess from the Virgo cluster

- Flux pattern correlation [Pierre Auger collab. ApJL, 853:L29 (2018)]
 - With a flux pattern of starburst galaxies, isotropy of UHECR is disfavored with 4.0σ confidence above 39 EeV

9.7% anisotropic fraction and 12.9° angular scale •

The other three flux patterns: 2.7σ – 3.2σ

Threshold energy [EeV]

24

Exposure and full sky coverage TA×4 + Auger **K-EUSO : pioneer detection from** space with an uniform exposure in northern/southern hemispheres

> 10 - 15 years escence detector Array of Single-pixel Telescope.

Next generation observatories In space (100×exposure): POEMMA Ground (10×exposure with high quality events): FAST

- Physics goal and future perspectives Origin and nature of ultrahigh-energy cosmic rays (UHECRs) and particle interactions at the highest energies
 - 5 10 years
 - **Detector R&D** Radio, SiPM, Low-cost
 - fluorescence
 - detector

"Precision" measurements AugerPrime

Low energy enhancement (Auger infill+HEAT+AMIGA, TALE+TA-muon+NICHE) LHCf/RHICf for tuning models

