

Cosmic ray electrons and positrons over decade with the PAMELA experiment

<u>Vladimir Mikhailov,</u> Svetlana Kleymenova MEPHI, Moscow

PAMELA collaboration

IV ICPPA, 26, October, 2018

PAMELA Collaboration

The PAMELA instrument

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

The PAMELA Experiment

The PAMELA discovery: rising positron fraction

Phys.Rev.Lett. 2011 (e-), Phys Pep. 2014 (e+)

- First electron measurement above 50 GeV;
- Both (e-) (e+) spectra show some structure (breaks and bumps)
- Above ~10 GeV flatter than extrapolated from low energies.
- Concave shape in both cases is clear indication of an additional component above ~10 GeV

- Cannot be reproduced with a single power-law injection spectrum
- Origin :
- ✓ Local astrophysical sources (pulsars)?
- Hard component?

- AMS02 and Fermi-LAT confirmed results
- Measurements extended to ~800 GeV for e+ for very high statistic accuracy

300

MASS

AMS-01

• HEAT

E³Φ_e-[GeV²m⁻² sr⁻¹ s⁻¹] 00 120 100

100

50

Positron Flux

Is here a bump in positron spectrum?

The feature should be visible both in e+ and e- spectra

New generation of space instruments

All electron spectrum in 2017

Data from https://tools.ssdc.asi.it/CosmicRays/

New electron analysis

Above 100 GeV : ~120 events in (Ph.Rev.Lett. 2011), new selection ~600 events

All electron (e⁺+e⁻) spectrum

Energy spectra Φ (E) evaluated by

$$\Phi (\mathsf{E}) = \frac{\mathsf{N}(\mathsf{E}) - \mathsf{Nb}}{\Delta \mathsf{E} \mathsf{T} \mathsf{G}(\mathsf{E}) \varepsilon(\mathsf{E})}$$

Where N(E) is number of events in energy bin ΔE , Nb=0 T is exposure time, G(E) and ϵ (E) are geometric factor and efficiency evaluated by MC simulations

PAMELA all electron (e⁺+e⁻) spectrum

•Below ~30 GV heliosphere strongly affects CRs at Earth;

•Charge dependent solar modulation due to drift term (d); V_D depends from heliospheric magnetic field polarity *A*. *A* changed in 2013-2014 from *A*<*0* to *A*>*0*

(a) $f(\mathbf{x}, p, t)$, omnidirectional function distribution of CRs; (b) convection with solar wind V; (c) diffusion by magnetic field irregularities; (d) drift, curvature and gradient in magnetic field; (e) adiabatic energy losses; (f) local sources (Jovian electrons);

Thank you