Reconstruction of particle's energy spectrum in experiment with Unfolding technique

Olga Dunaeva Yuri Bogomolov

Yaroslavl State University

Andrey Mayorov

National Research Nuclear University MEPhI

- 1. Main problem and direct method of solving
- 2. Unfolding methods overview

1

- 3. Software implementation: ROOT, RooUnfold
- 4. Computational experiments results: comparison

Main problem

Measured value

True distribution

Measured distribution

Main problem

Main problem (sampling)

$$v_i = \sum_j R_{ij} \tau_j$$

 $\tau = (\tau_1, \tau_2, ..., \tau_k)$ — true distribution

 $\mu = (\mu_1, \mu_2, ..., \mu_n)$ — measured distribution

 $M\mu = v = (v_1, v_2, ..., v_n)$

Unfolding "Naive" method

 $v = R\tau$

 τ — true distribution μ — measured distribution $M\mu$ = ν

Unfolding

Maximum likelihood estimation

$$L(\tau) = \prod_{i} P(\mu_{i}, \nu_{i}(\tau)) = \prod_{i} e^{-\nu_{i}} \frac{\nu_{i}^{\mu_{i}}}{\mu_{i}!} \to \max_{\tau}$$

True distribution (spectrum) estimation: $\hat{\tau} = R^{-1} \mu$

(the same as in "naive" method)

Properties: consistent and unbiased estimator, minimal error for unbiased estimators class.

Problems: unstable for μ fluctuations, too large statistical errors.

Conclusion: biased estimators (add systematic bias).

Unfolding methods ideas

- 1. Correction by multiplicative coefficients (for measured spectrum)
- 2. Bayesian methods (D Agostini methods + modifications)
- 3. Metods based on regularization
- 1. Tikhonov's regularization + **SVD** (Kartvelishvili, Hoecker)
- 2. Tikhonov's regularization , bias limitation + L-curve (Schmitt)
- 3. regularization based on entropy

Bayesian method

(D Agostini)

 $(C_1, C_2, ..., C_k)$ — causes — particle is in the given energy interval (bin)

 $(E_1, E_2, ..., E_n)$ — effects — particle is detected in the given energy interval (bin) $R_{ii} = P(E_i | C_i)$ — migration matrix

Basic idea

$$M_{ji} = P(C_j | E_i) = \frac{P(E_i | C_j)P(C_j)}{\sum_k P(E_i | C_k)P(C_k)}$$
$$\hat{\tau} = M\mu$$

Iterative bayesian method (D Agostini)

$$R_{ij} = P(E_i | C_j) - \text{migration matrix}$$
$$\varepsilon_i = \sum_k P(E_i | C_k) - \text{efficiency}$$

1. Initialization:

2. Iteration: $M_{ji} = \frac{R_{ij}P(C_j)}{\varepsilon_i \sum_k R_{ik}P(C_k)}$ $\hat{\tau} = M\mu \qquad P(C_j) = \hat{\tau}_j / \sum_k \hat{\tau}_k$

 $P(C_i) = P_0(C_i)$

3. Evaluate errors, repeat step 2 if necessary.

G. D'Agostini. A multidimensional unfolding method based on Bayes' theorem
 Nuclear Instruments and Methods in Physics Research A, 362:487498, Febr. 1995.
 9

Methods based on regularization

$$R\tau = \mu \quad \longleftrightarrow \quad L(\tau) = (R\tau - \mu)^T (R\tau - \mu) \rightarrow \min_{\tau}$$

$$\Phi(\tau) = L(\tau) + \alpha \cdot S(\tau) \to \min_{\tau}$$

$$S(\tau)$$
 — regularization function
 α — regularization coefficient

- Tasks:* choose S,
 - * choose optimal α .

SVD Unfolding

$$\Phi(\tau) = L(\tau) + \alpha \cdot S(\tau) \to \min_{\tau}$$

$$S(\tau) = \sum_{i} (\tau_{i-1} - 2\tau_i + \tau_{i+1})^2 = (C\tau)^T (C\tau)$$

Solution $R\tau = \mu$ system by SVD $R = USV^T$

U, V — orthogonal matrices S — diagonal matrix

Solution of new system SVD

$$z_i = \frac{d_i}{s_{ii}} \cdot \frac{s_{ii}^2}{s_{ii}^2 + \alpha}$$

$$USV^{T} \tau = \mu$$

$$z = V^{T} \tau, \quad d = U^{T} \mu$$

$$Sz = d \quad \Rightarrow \quad z_{i} = \frac{d_{i}}{s_{ii}}$$

$$\tau = Vz$$

SVD Unfolding

$$\Phi(\tau) = L(\tau) + \alpha \cdot S(\tau) \to \min_{\tau}$$
$$S(\tau) = \sum_{i} (\tau_{i-1} - 2\tau_i + \tau_{i+1})^2 = (C\tau)^T (C\tau)$$

Extras:

1. Renormalization of the original system

2. Choose regularization coefficient as $\alpha = s_{kk}^2$ where s_{kk} — last «large» singular value s_{ii}

> A. Hoecker and V. Kartvelishvili SVD Approach to Data Unfolding (Nucl. Instrum. Meth. A 372 (1996) 469 [arXiv:hep-ph/9509307])

TUnfold

$$\begin{split} \Phi(\tau) = & L_1(\tau) + \alpha \cdot L_2(\tau) + \lambda \cdot L_3(\tau) \to \min_{\tau} \\ & L_1(\tau) = L(\tau) \\ & L_2(\tau) - \text{regularization function (smoothness)} \\ & L_3(\tau) - \text{bias limitation} \end{split}$$

Regularization coefficients choosing

- 1. L-curve
- 2. Correlation coefficient minimization

Testing on proton's energy spectrum

Software implementation

ROOT (5.28, 5.34) TUnfold RooUnfold 1.1.1 Tunfold SVD unfolding Bayes unfolding

Data

Exponential spectrums (sp1 and sp2) are generated

- 1. Exponential parameters -1 and -2
- 2. Generative and measure energy values
- 3. Migration matrix constructed by sp2
- 4. Migration matrix applied for sp1

Problems

1. Migration matrix construction

Condition $R_{ii} > 0,5$ (Blobel) Possibility of using for another distribution (spectrum)

2. Binning

The effect of extreme (additional) bin Irregular binning Different binning for true/measured spectrum The effect of binning on the quality of the unfolding

3. Methods particular features

Bayesian methods: number of iterations Regularization methods: coefficient

4. General

Unfolding quality estimation (comparision) Using methods for several measured values

Migration matrix Different binning

Wide bins, max Rig = 1.6Gv

Short bins, max Rig = 1.6Gv

Results TUnfold (ROOT)

True

Unfolded

Measured

Wide bins

Results TUnfold (ROOT)

Method is sensitive to binning

Results SVD unfolding (RooUnfold)

Wide bins

Wide bins

SVD unfolding (RooUnfold)

 $K_reg = 5$

 $K_reg = 12$

20

Short bins

SVD unfolding (RooUnfold)

Same behavior

Different bins

SVD unfolding (RooUnfold)

Wide bins

Bayes unfolding (RooUnfold)

iterations = 1

Results Bayes unfolding (RooUnfold)

iterations = 10

Wide bins

Wide bins

Bayes unfolding (RooUnfold)

Short bins

Bayes unfolding (RooUnfold)

iterations = 1

Short bins

Bayes unfolding (RooUnfold)

iterations = 100

Iterations convergence depends on binning

Conclusions

Methods features

* Bayesian method

perceptible dependence on iterations and some dependence on binning + can be used for several measured parameters (2D)

* SVD unfolding

regularization coefficient choosing

* TUnfold

perceptible sensitivity to binning

Thank you for your attention!

Olga Dunaeva Yuri Bogomolov Andrey Mayorov

29

Idea of extending for several parameters

Unpack the matrix in a one-dimensional array

Then possible to use Bayesian method because it's based on just probabilities (to detect the event in some bin)

Other methods use the information about nearest bins

High energy

Migration matrix

High energy (10-1000 GeV)

TUnfold (RooUnfold)

Aplied to cosmic rays spectrum (-2.7)

Bayes unfolding (RooUnfold)

iteration = 10

Results SVD unfolding (RooUnfold)

k_reg = 7

Unpacked migration matrix

Migration matrix for Azimuthal and Zenith angle

Use 36 bins for azimut and 14 bins for zenit angle gives migration matrix 504x504