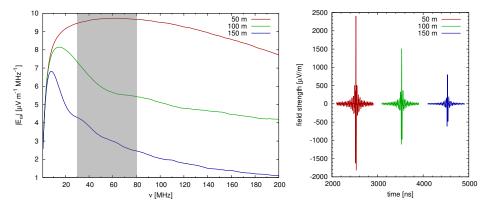

Overview of the Tunka-Rex experiment


Tatiana Marshalkina for the Tunka-Rex Collaboration

October 24, 2018

Radio emission from air-showers

Radio signal

TAIGA

Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy

Cosmic ray detectors < EeV</p>

- Tunka-133, air-Cherenkov array
- Tunka Radio Extension (Tunka-Rex)
- Tunka-Grande scintillators

Gamma ray detectors >TeV

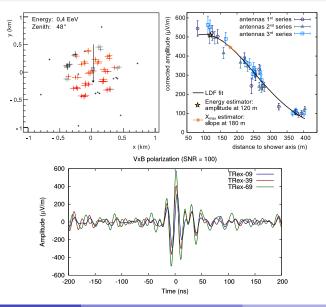
- TAIGA-HiSCORE
- TAIGA-IACT

Tunka-133 Tunka-Rex Tunka-Grande Tunka-HiSCORE TAIGA-IACT Image: Comparison of the second seco

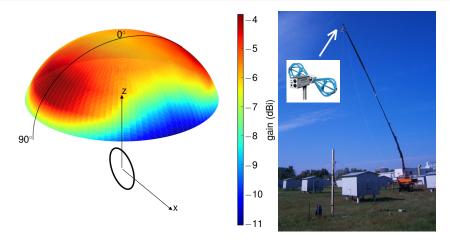
Tunka-Rex

- Tunka-Rex is a sparse antenna array, detecting radio emission from cosmic-ray air showers
- It consists of 63 antenna stations on 1 km²
- Radio frequency band is 30-80 MHz
- Energy threshold is 100 PeV
- Triggered by Tunka-Grande and Tunka-133

Timeline


~100 events per season triggered by Tunka-133		commission of Tunka-Grande with	~1000 events per season triggered by Tunka-133 and Tunka-Grande			
18 antennas	25 antennas	44 antennas	Φφ	63 antennas	ΦΦΦ	open data
2012	2013	2014	2015	2016	2017	2018
Progress:				Plan:		
* Cross-calibration of radio and air-Cherenkov signal				* Independent reconstruction with radio		
* Precise reconstruction of energy and shower maximum				 * Joint reconstruction of electromagnetic and muon components of air showers 		
* Calibration of absolute energy scales of cosmic-ray				* Mass composition study		
experiments via radio extensions				* Technologies for lowering the threshold		
* Estimation of aperture and exposure of radio array				* Open-access to data and software		
* Mean shower maxima as function of primary energy						

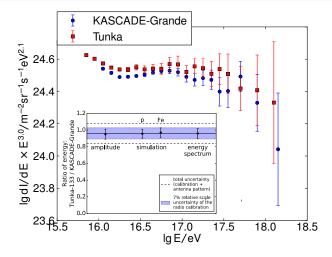
- Measurement season from October to April
- Starting from 2015 Tunka-Rex reached 85% uptime
- Duplex and triplex measurements (e/μ , γ_c , radio)


Reconstuction pipeline

- Station-level analysis
 - Digital filtering
 - RFI rejection
 - SNR cuts
- Event-level analysis
 - $N_{ant} \ge 3$
 - Reconstruction of arrival direction and core position
 - Comparison with Tunka-133/Tunka-Grande reconstruction ($riangle \Omega < 5^{\circ}$)
 - Signal correction (adjustment $f_c(t', SNR)$, $V \times V \times B$ correction)
 - Amplitude fits
 - Energy and shower maximum reconstruction
- Statistical analysis
 - Quality and efficiency cuts
 - Aperture and exposure estimation

Example of event

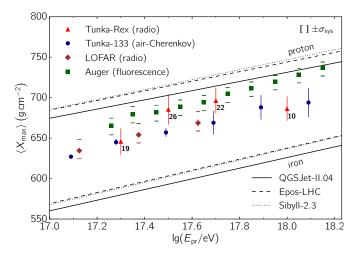
Amplitude calibration of Tunka-Rex


- Tunka-Rex, LOPES and LOFAR calibrated consistently with same source
- Calibration is used as normalization for simulated antenna pattern

doi:10.1016/j.nima.2015.08.061

Tatiana Marshalkina

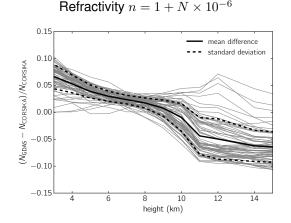
Overview of the Tunka-Rex experiment


Energy scale comparison of Tunka-133 and KASKADE-Grande

Tunka-Rex + LOPES Colls., PLB 763 (2016) 179

Tatiana Marshalkina

$\langle X_{max} \rangle$ as function of primary energy [Phys.Rev. D 97, 122004]

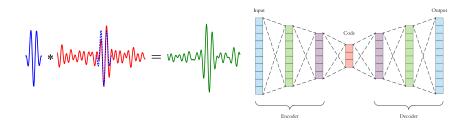


 X_{max} resolution is 25-35 g/cm^2 , E_{pr} resolution is 10%

Tatiana Marshalkina

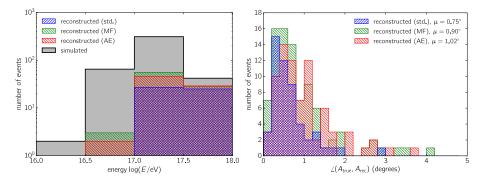
Overview of the Tunka-Rex experiment

Influence of air refractivity



- Event-to-event uncertainty 3 g/cm^2 (refractivity variation of 2%)
- Systematic shift up to 5 g/cm^2 (refractivity difference of 5%)

Tatiana Marshalkina


Overview of the Tunka-Rex experiment

Methods of signal reconstruction: matched filtering and neural networks

- Matched filtering is based on the convolution of input trace with template. Its the best performance can be achieved only in the case of white noise
- To improve the recognition of non-gaussian features in the traces convolutional neural networks with autoencoder architecture were applied

Impovements of signal reconstruction methods: matched filtering and autoencoder

Applying of matched filtering and autoencoder on simulated dataset have shown their ability to detect low energy events

Summary

- Tunka-Rex is a modern, cost-effective radio detector with precision competitive to established techniques
- $\langle X_{max} \rangle$ as function of primary energy, reconstructed by Tunka-Rex, is in agreement with other experiments. Developed methods will allow to increase statistics of TAIGA facility in ultra-high energy range.
- We are continuously improving signal reconstruction of Tunka-Rex: matched filtering and autoencoder will be implemented in data analysis soon