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The LHCb detector

« LHCbisasingle-arm forward spectrometer
* The main goal of the detector is to search for indirect evidence of new
physics in CP violation and rare decays of beauty and charm hadrons

[LHCb detector performance]
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https://www.worldscientific.com/doi/abs/10.1142/S0217751X15300227

LHCb Run |l data flow
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[Real-time physics, alignment, and reconstruction in the LHCb trigger] 3



https://pos.sissa.it/321/226/pdf

Track Pattern Recognition
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Long Track Reconstruction
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Hough Space

Starting from seeds in the VELO, tracks are searched in T stations:

« Search window in T stations defined by VELO track

* Project x-hit hits into reference plane - Hough transformation

» Fit 4-layer-x-cluster and remove outliers

» Add and fit track with stereo hits

Deep Neural Networks:

1. Rejection of bad 4-layer-x-clusters in recovery loop

2. Candidates selection after stereo fit (HLT1 and HLT2)
[Tracking and Vertex [Machine learning and parallelism in the 5
reconstruction at LHCb for Run ] reconstruction of LHCb and its upgrade]



http://iopscience.iop.org/article/10.1088/1742-6596/898/4/042042/meta
https://cds.cern.ch/record/2265227/

Downstream Track Reconstruction

T_stations Find Select best
tracks matching track
TT hits candidate
- Uses Bonsai - Uses a
Boosted Multilayer

Decision Trees Perceptron to
toreject ~30% gain 3-5% in
Upstream track of fake T-seeds fake tracks
T 1213 rejection and
real tracks

T efficiency

///_.
VELO Long track
]
VELO track W
T track

~

[A tracking algorithm for the reconstruction of the
daughters of long-lived particles in LHCD]



https://cds.cern.ch/record/2624829/files/Poster-2018-636.pdf
https://cds.cern.ch/record/2624829/files/Poster-2018-636.pdf

Fake Track Rejection

« Multilayer Perceptron reduces the fake track rate from 22% to 14%

« Multilayer Perceptron takes 0.5-2% of run time of forward algorithm,
but the whole reconstruction sequence is faster due to less fakes
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[Fast neural-net based fake track rejection

in the LHCb reconstruction]
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https://cds.cern.ch/record/2255039/files/LHCb-PUB-2017-011.pdf

Topological trigger (HLT?2)

Selects of any B (and D) decay with at least 2 charged daughters
Designed to handle the possible omission of child particles
Uses Gradient Boosting (MatrixNet)
Trained on simulated data

i
[LHCb Topological Trigger Reoptimization] el
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http://iopscience.iop.org/article/10.1088/1742-6596/664/8/082025

Jet tagging

b jet

w

—3 tracks

.. e e b had
Identifies b, c and light jets ladron
Trained onsimulateddata Impact
parameter
Uses kinematic observables of SVs
as inputs 28 secondary
. / vertex
Uses Boosted Decision Trees

The efficiency for identifying a b(c)

- primary vertex
jet is ~65%(25%) ‘ ‘7 \

* Probability for misidentifying a light-
parton jet of 0.3% for jets

ForRunl,py >20GeV,2.2<n<4.2 [Identification of beauty and charm
quark jets at LHCb] o)



http://iopscience.iop.org/article/10.1088/1748-0221/10/06/P06013/meta
http://iopscience.iop.org/article/10.1088/1748-0221/10/06/P06013/meta

Charged particle identification

Objective: combine information from all subdetectors into a
single decision on particle type

Tracking Muon
System RICH ECAL HCAL Chambers
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Charged particle identification

* Deployed: ProbNN, neural network with one hidden layer
* Each particle type has its own binary neural network trained in one-

particle-vs-rest mode
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Plots: using data sidebands for backgrounds and Monte
Carlo simulation for the signal

[LHCb detector performance] 11



https://www.worldscientific.com/doi/abs/10.1142/S0217751X15300227

Charged particle identification

I I [Machine Learning based global particle
P rel imind ry identification algorithms at the LHCb experiment]
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https://indico.cern.ch/event/587955/contributions/2937578/

¥ — y separation

* Signal: single photony
* Background: photons from n%— yy decay
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¥ — y separation: deployed
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[A tool for y/m%separation at high energies]

5000

6000

75500
B mass (MeV)

14


https://cds.cern.ch/record/2042173?ln=en

¥ — y separation
Work in progress

LHCb MC preliminary
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[Boosting Neutral Particles |dentification by Boosting Trees: L HCb case] 15



https://indico.cern.ch/event/587955/contributions/2937533/

U BOOSt [uBoost: a boosting method for producing uniform

selection efficiencies from multivariate classifiers]

* (lassification algorithm, boosting over decision trees

* Uniform selection efficiency with the respect to mass

* Usedinsome LHCb analyses
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Selection efficiency distributions for /0% overall signal efficiency
using (left) AdaBoost and (right) uBoost on toy data
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http://iopscience.iop.org/article/10.1088/1748-0221/8/12/P12013/meta

Data Quality: RoboShifter

A Robo-shifter JE:UHM - + 183156

Robo-shifter

The prediction for this run is 0.47

Please judge by distribution of predictions:

B Bad runs

Aids shifter in data quality . e

monitoring 2
Predicts probability of give run
being bad ¢

Provides list of features that

contributed the most to the S
.. Suspicious histograms:
d eC I S l O n * /OfflineDataQuality/ALIGNMENT: page 06: IT overlap residuals: histogram
. IT1TopBox dx
Ad a B ooSst wit h {rees Of d e pt h /I « /OfflineDataQuality/TESLA-BRUNEL: page 01: Tesla Brunel monitor:

histogram Tesl/aBrunelMonitor

« /OfflineDataQuality/CALO: page 1: Photon and Electrons Reconstruction:
histogram (gg) mass Rec/Calo/Photons

« /OfflineDataQuality/TESLA-BRUNEL: page 01: Tesla Brunel monitor:
histogram TeslaBrunelMonitor

* /OfflineDataQuality/RICH: page 8: PID Monitoring with J-Psi: histogram
Mass of J/psi(1S)_all

[LHCb data quality monitoring] * /OffineDataGuallty/ALIGNMENT: page 04: RICH HPD Panel Alignment: .

histogram dTheta v phi CSide-right



http://iopscience.iop.org/article/10.1088/1742-6596/898/9/092027

Calorimeter Fast Simulation
Work in progress

Training scheme
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[Generative Models for Fast Calorimeter Simulation: LHCb Case] 18



https://indico.cern.ch/event/587955/contributions/2937612/

Calorimeter Fast Simulation
Work in progress
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RICH Fast Simulation

Work in progress

Trained on real data (calibration samples)

Directly samples P(PID DLL | kinematics, particle type) bypassing simulation and
reconstruction

Plain Cramer GAN using fully-connected deep NNs

Pro: simple data structure (just 8D) allows for high fidelity

Con: parametrization limited to variables included in training

[Cherenkov Detectors Fast Simulations Using Neural Networks] 20



https://rich2018.org/indico/event/1/contributions/89/

RICH Fast Simulation

Work in progress

Generated DLL Proton

Plots are a pilot study on BaBar DIRC MC
1t vs K AUC difference ~0.07
No public plots for LHCb at the moment, sorry
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Summary

ML is used almost at every stage of LHCb data processing
15 minutes is not nearly enough to present everything

~/0% of all data retained are classified by machine learning

Greatly improved performance while satisfying the robustness requirements of
a system that makes irreversible decisions

"As an example, achieving the same sensitivity as a recent L HCb search for the
dark-matter analogue of the photon without the use of machine learning would
have required 70 years of data collection instead of 7 *

Looking forward to exciting new developments: GANs, LSTMs and other fun
things

[LHCb Topological Trigger Reoptimization]

[Search for dark photonsin 13 TeV pp *[Machine learning at the energy and 9
collisions] intensity frontiers of particle physics]



https://www.nature.com/articles/s41586-018-0361-2
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.061801
http://iopscience.iop.org/article/10.1088/1742-6596/664/8/082025

Image: Yandex
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Muon identification

Muons are distinguished as the particles penetrating through the whole
detector and reaching the muon chambers

« Muon ID in nutshell: checking whether there are muon chambers hits associated
with the track

 Muon ID HLT1: IsMuon, uses multiple scattering theory to define a cone around
the track checks whether there are hits in it. ~98% efficient in Run Il, will fall to
~90% after Upgrade

track

25
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ML for Muon ldentifictlalels
Work in progress

We develop MuonlID based on gradient
boosting

To berun after IsMuon

Training on real data: calibration samples
Features: hits residuals, timing, technical
information

No public plots (yet)



NN for Upgrade VELO
Work in progress

- Inputs X are seed & target layer (r, @)
coodinates

- One seed (r, ¢) pair and several target
(r, @) pairs

- Outputs are target index (class)
probabilities

- Network topology & dimension of y
not a priory ovious

« Trained on labeled data from full
simulation

- Train one classifier for each pair of layers
to be connected

Efficient data preparation an book-keeping required.

[Novel Approaches to Track & Vertex
Reconstruction in the Upgraded LHCb VELQO] 57



https://indico.cern.ch/event/587955/contributions/2937565/

LSTM for Upgrade VELO

Work in progress

Track Reconstruction in the Vertex Locator

1. Reconstruct tracks via track forwarding from the outer to the inner region

2. Simplified Kalman Filter to account for multiple scattering and predict a track’s
closest to beam (CTB) position. Problem: missing momentum information

3. ldea: use a special Neural Network architecture to handle variable number of
hits in a track

[New approaches for track
? G]D ? GP reconstructionin LHCb's
Vertex Locator]

LSTM ]—b[ LSTM ]—P[ ]—b[ LSTM
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Model architecture to predict CTB position
Outline of the VELO including an exemplary B decay


http://cds.cern.ch/record/2631899/files/Poster-2018-645.pdf

