Lepton number violation search with neutrinoless double beta decay: overview over experiments

Bernhard Schwingenheuer Max-Planck-Institut für Kernphysik, Heidelberg

disclaimer: I will only discuss experiments with new results in this talk

Topics in neutrino physics

Neutrino flavor physics: underlying symmetry ?

- mixing matrix U and $|\Delta m^2|$, quite well known but: $\theta_{23} = 45^{\circ}$ or small deviation from 45° ?
- sign of Δm_{31}^2 ?
- CP phase = $3\pi/2$? (likely not relevant for leptogenesis)
- Neutrino mass: absolute mass scale, origin of neutrino mass: why are masses so small ?

Is mixing matrix unitary (sterile neutrinos, ...)?

major impact

Are neutrinos Majorana or Dirac particles (lepton number violation)?

Schwingenheuer, $0\nu\beta\beta$ experiments

Neutrino mass: Lepton number violation?

possible neutrino mass terms (v has no electric charge)

in general: expect v to be Majorana particles \rightarrow L violation

ICPPA, 23 Oct 2018

How to observe $\Delta L=2:0\nu\beta\beta$

Look for a process which can only occur if neutrino is Majorana particle

coupling strength ~
$$m_{\beta\beta} = \sum_{i=1}^{3} U_{ei}^{2} m_{i}$$

function of
- neutrino mixing parameters
- lightest neutrino mass

also possible: heavy N exchange \rightarrow coupling strength $\sim \sum_{i=1}^{3} V_{ei}^2 / M_i$

Neutrinoless double beta decay

"single" beta decay not allowed \rightarrow only "double beta decay" (A,Z) \rightarrow (A,Z+2) + 2 e⁻ + 2 \overline{v} $\Delta L=0$ (A,Z) \rightarrow (A,Z+2) + 2 e⁻ $\Delta L=2$

experimental signature for $\beta\beta$

Note: similar process in principle also observable at accelerator or reactor or ... but for light Majorana neutrino:

- background too high
- flux too low compared to Avogadro N_A

 $0\nu\beta\beta$: search for a line at Q value of decay

ICPPA, 23 Oct 2018

Light Majorana neutrino exchange

scan of $m_{\beta\beta} (\Delta m_{atm}^2, \Delta m_{sol}^2, m_{min}, \theta_{atm}, \theta_{sol}, \theta_{13}, 2$ Majorana phases) according to measurements (2 σ range) or random (2 Maj. phases)

$0\nu\beta\beta$: other mechanisms

Warning: don't stick to $m_{\beta\beta}$ metric, just go on with $T_{1/2}$! Variety of $0\nu\beta\beta$ mechanisms:

 Δ L & new physics also at LHC, LFV

Lisi: Neutrino18

 $0\nu\beta\beta$ from any mechanism \rightarrow Majorana nature of ν would be established anyway

From $T_{1/2}$ to $m_{\beta\beta}$

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

 $T_{1/2}^{0v}$ = measured experimentally

 G^{0v} = phase space factor ~ Q⁵

 M^{0} = nuclear matrix element

 m_e = electron mass

need $M^{0\nu}$ to understand physics mechanism

Experiment observes
$$N^{0\nu} = \ln 2 \frac{N_A}{A} \cdot a \cdot \epsilon \cdot M \cdot t / T_{1/2}$$
 and
Experimental sensitivity
 $T_{1/2}(90\% CL) > \begin{cases} \frac{\ln 2}{2.3} \frac{N_A}{A} a \cdot \epsilon \cdot M \cdot t & \text{for } N^{bkg} = 0 \\ \frac{\ln 2}{1.64} \frac{N_A}{A} a \cdot \epsilon \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} & \text{for large } N^{bkg} \end{cases}$

selected $0\nu\beta\beta$ isotopes from PRD 83 (2011) 113010								
	Isotope	G ^{0v} [10 ⁻¹⁴ y]	Q[keV]	nat. abund.[%]				
	⁴⁸ Ca	2.5	4273.7	0.187				
	⁷⁶ Ge	0.23	2039.1	7.8				
	⁸² Se	1.0	2995.5	9.2				
	¹⁰⁰ Mo	1.6	3035.0	9.6				
	¹³⁰ Te	1.4	2530.3	34.5				
	¹³⁶ Xe	1.5	2461.9	8.9				
	¹⁵⁰ Nd	6.6	3367.3	5.6				

enrichment required except for ¹³⁰Te, not (yet) possible for all, costs differ

nd $N^{bkg} = M \cdot t \cdot B \cdot \Delta E$

M = mass of detector

t = measurement time

A = isotope mass per mole

N_A= Avogadro constant

a = fraction of $0\nu\beta\beta$ isotope

- ϵ = detection efficiency
- B = background index in units cnt/(keV kg y)

 ΔE = energy resolution = energy window size

Schwingenheuer, $0\nu\beta\beta$ experiments

Nuclear matrix element calculations

Background reduction

signal: 2 e⁻ with $\Sigma E_{kin} = Q_{\beta\beta} \rightarrow$ energy well known and 'localized' E deposition

backgrounds:

muons (cosmic rays) \rightarrow go underground, deeper \rightarrow lower flux

neutrons (muons or (α ,n) reactions) \rightarrow shielding by low Z material, delayed coincidence

γ (U/Th decay chain) → use "clean" material (screening) shield with clean material like liquid scintillator or water or LAr particle ID (single ionization vs. multiple Compton, ...) only "active material" (see additional energy depositions)

 e/α (surface events) \rightarrow fiducial volume, particle ID

 $2\nu\beta\beta$ (allowed decay) \rightarrow energy resolution

GERDA: Ge in LAr @ Gran Sasso

EPJ C78 (2018) 388

Phase I / II data taking since 2013 / 2015

GERDA latest result 2018

Neutrino 2018:

Frequentist: 90% C.L. limit 0.9 x 10²⁶ yr sensitivity 1.1 x 10²⁶ yr

Bayesian: 90% C.I. limit 0.8×10^{26} yr sensitivity 0.8×10^{26} yr

Friday morning: nuclear physics

BI * 100 kg yr * FWHM < 1 \rightarrow 'background -free'

Majorana Demonstrator: ⁷⁶Ge in Cu shield

[N. Abgrall et al. Adv. High Energy Phys 2014, 365432 (2014)]

'conventional' shielding with Cu+Pb self-made electroformed Cu low background electronics, cables, ...

```
35 PPC with 88% <sup>76</sup>Ge (30 kg)
23 BEGe (natural, 14 kg)
```

first result PRL 120 (2018) 132502

- 26 kg yr (active mass),
- FWHM ~ 2.5 keV → best in field
- background ~5 cnt/(keV t_{active} yr)

90% C.L. limit $T_{1/2} > 2.7 \times 10^{25}$ yr sensitivity 4.8 x 10^{25} yr

ICPPA, 23 Oct 2018

Kamland-Zen: ¹³⁶Xe in scintillator

FWHM ~ 240 keV, background ~ 0.4 cnt/(keV t_{Xe} yr) in centeral 1m Ø, total exposure ~ 600 kg yr $T_{1/2}^{0v} > 10.7 \cdot 10^{25}$ yr (90% C.L.)sensitivity ~5.6 10^{25} yrKamland Zen 800: larger & cleaner balloon, 750 kg, restart 2018, sensitivity 5 x 10^{26} yrfuture Kamland Zen2: more light, 1000 kg(Wednesday morning: Neutrino physics 3)

ICPPA, 23 Oct 2018

Schwingenheuer, 0vββ experiments

EXO-200: liquid ¹³⁶Xe TPC

CUORE: TeO₂ crystals at 10 mK

Discovery vs limit setting

discovery: 50% chance for a 3σ signal

low background important especially for discovery!

Comparison (some) experiments

		mass [kg]* (total/FV)	FWHM [keV]	background& [cnt/t yr FWHM]	T _{1/2} limit sens. [10 ²⁵ yr] final	m _{ee} limit, <mark>worst NME</mark> [meV] (g _A =1.27)
Gerda II	Ge	35/27	3	4	15	190 running
MajoranaD	Ge	30/24	2.5	15	15	190
EXO-200	Xe	170/80	88	140	6	220
Kamland-Z	Xe	383/88 750/??	240	90 ?	6 50	220 80
Cuore	Те	600/206	5	370	9	210
NEXT-100	Xe	100/80	17	30	6	220 constr.
AMoRe I/(II)	Мо	<mark>5/</mark> (200)			<mark>2/</mark> (100)	300/(40)
SNO+	Те	2340/260	190	60	17	150
LEGEND200	Ge	200/160	2.5	1	100	75
KamL2-Zen	Хе	1000/??	170			50 future
nEXO	Xe	5000/4000	58	5	900	18
CUPID-Mo	Мо		5	<0.2	200	30
LEGEND-1k	Ge	1000/800	2.5	<0.2	1000	24

* total= element mass, FV= $0\nu\beta\beta$ isotope mass in fiducial volume (incl enrichment fraction) & kg of $0\nu\beta\beta$ isotope in active volume and divided by $0\nu\beta\beta$ efficiency

Summary

- (my) strong prejudice: $0\nu\beta\beta$ exists, $\Delta L=2$ process, possibly our only observable ΔL
- $T_{1/2}$ unknown (depending on BSM physics ...), discovery can be 'around the corner'
- currently many new results more experiments start data taking soon no signal $T_{1/2}$ sensitivities reach now 10^{26} yr
- future will (hopefully) have a few experiments with sensitivities $10^{27} 10^{28}$ yr \rightarrow reach m_{BB} < 20 meV (using worst case NME, unquenched g_A)
- which technology is good for 10²⁸ yr and will be funded?