Overview of the Compressed Baryonic Matter experiment at FAIR

Viktor Klochkov

(GSI, Frankfurt University)

for the CBM Collaboration

Outline

Physics motivation

• CBM experimental setup

• Physics performance studies

Rich structure of the QCD matter phase diagram

Rich structure of the QCD matter phase diagram

Dense Baryonic Matter

Neutron stars

Neutron star merger

Heavy ion collisions

T~10-100 MeV

SIS100 energies
T < 120 MeV
$\rho < 5 - 15 \rho_{0}$

Density	ρ < 10 ρ ₀	ρ < 2 – 6 ρ ₀
Lifetime / Reaction time	~ infinity	T ~ 10 ms

T < 10 MeV

t ~ 10⁻²³ s

25.10.2018

Temperature

Net-baryon density at SIS100 FAIR energies

I. Arsene et al. PRC75 034902 (2007)

High baryon densities during system evolution!

CBM physics and observables

- Quark matter equation-of-state at large baryon densities, coexistence (quarkyonic) & partonic phases:
 - Hadron yields, collective flow, correlations, fluctuations
 - (Multi-)strange hyperons (K, Λ , Σ , Ξ , Ω)
 - production at (sub)threshold energies
- Chiral symmetry at large baryon densities
 - In-medium modifications of light vector mesons
 - ρ , ω , $\phi \rightarrow e^+ + e^- (\mu^+ + \mu^-)$ via dilepton measurements
- Hypernuclei
- Charm production and propagation at threshold energies
 - Excitation function in p+A collisions (J/ ψ , D⁰ , D⁺⁻)
 - Charmonium suppression in cold nuclear matter

https://inspirehep.net/record/1474181

Experiments in the high net-baryon density

Interaction Rate [Hz] 10⁷ CBM SIS100 10⁶ 10⁵ BM@N HADES 10⁴ NICA/MPD STAR F.t **STAR BESII** 10³ NA61/SHINE 10² 10 1 Collision Energy $(\sqrt{s_{NN}})$ [GeV]

CBM collab., EPJA 53 (2018) 60

CBM will operate at high reaction rates: 10⁵ - 10⁷ Au+Au collisions/sec!

Main experimental requirements

- High statistics needs high event rates: 10⁵ - 10⁷ Au+Au collisions/sec
- Fast, radiation hard detectors & front-end electronics
- Free-streaming readout & 4 dimensional (space+time) event reconstruction
- Particle identification: hadrons and leptons, displaced (~50 µm) vertex reconstruction for charm measurements
- High speed data acquisition & performance computing farm for online event selection

central Au+Au collision @ 10A GeV/c

GSI IT Center

CBM at FAIR, Darmstadt

More details: P. Giubellino, "FAIR Scientific Program", today 14:00

CBM area excavation

CBM detector subsystems

STS

Silicon Tracking System*

MVD

Micro Vertex Detector*

* magnetic field

MuCh or RICH

MuonChamber System/ Ring Imaging Cherenkov Detector

TRD

Transition Radiation Detector

ToF

Time-of-Flight Detector

ECAL

Electromagnetic Calorimeter

PSD

Projectile Spectator Detector

More details about STS: E. Lavrik, "The Silicon Tracking System of the CBM Experiment at FAIR", today 17:05

Needed components for physics analysis

- Displaced vertex reconstruction
- Particle identification
 - > charged hadrons
 - electrons / muons
- Collision centrality

Challenges of event and track reconstruction in CBM

CBM simulation central Au+Au collision @ 10A GeV/c

- High multiplicity collisions
- Events in the selected time window (time slice) will overlap in time
- High interaction rate → reconstruction will be in 4D (space, time)
- Decay topology reconstruction

Particle identification: light hadrons

CBM simulation central Au+Au collisions @ 10A GeV/c

Particle identification: electrons and light nuclei

Clear separation between pions and electrons, and light nuclei

Multi-strange reconstruction

CBM simulation UrQMD, Au+Au @ 10A GeV/c, central, 5M events

Decay topology reconstruction using the KFParticleFinder package

Hypernuclei

CBM simulation Au+Au 10A GeV/c minbias 5M events

CBM physics cases

- Λ -N, Λ - Λ interaction
- (Double-)lambda hypernuclei
- Meta-stable strange states

Anisotropic flow

Asymmetry in coordinate space converts due to interaction into momentum asymmetry with respect to the symmetry plane (reaction plane - RP)

Performance for directed flow (V_1)

pion v_1 , PSD centrality 10-35%

"input" model v_1 is recovered using "data-driven" method

Performance for directed flow (V_1)

Dilepton measurements: e^+e^- and $\mu^+\mu^-$

di-electrons

di-muons

- In-medium modifications of light vector mesons
- ρ , ω , $\phi \rightarrow e^+ + e^- (\mu^+ + \mu^-)$ via dilepton measurements

CBM FAIR phase-0 program (before the start of operation in 2025)

CBM eTOF sector (Jan. 2018)

CBM TOF modules @ STAR

PSD at BM@N

mini CBM @ GSI/SIS18

- Use 430 out of 1100 CBM RICH multi-anode photo-multipliers (MAPMT) in HADES
- 4 Silicon Tracking Stations in the BM@N in JINR (start 2020 with Au-beams up to 4.5A GeV)
- Tests and performance studies at the NA61/SHINE experiment @ CERN SPS

Summary

- CBM physics program at SIS100:
 - Precision study of the QCD phase diagram in the region of extremly high net-baryon densities
- Key experimental requirements:
 - high-rate capability of detectors and DAQ
 - online event reconstruction and selection
- Unique measurements of bulk & rare probes with CBM:
 - collective effects
 - event-by-event fluctuations
 - strangeness
 - lepton pairs
 - charm
 - hypernuclei and strange objects

The CBM Collaboration: 55 institutions, 470 members

China

CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang

Czech Republic CAS, Rez Techn. Univ.Prague

France IPHC Strasbourg

Hungary KFKI Budapest Budapest Univ.

Germany

Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS GSI Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf KIT Karlsruhe Münster Univ. Tübingen Univ. Wuppertal Univ. ZIB Berlin

India

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ.

Korea

Pusan Nat. Univ.

Romania NIPNE Bucharest Univ. Bucharest

Poland

AGH Krakow Jag. Univ. Krakow Warsaw Univ. Warsaw TU Russia IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow VBLHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow PNPI Gatchina SINP MSU, Moscow

Ukraine

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

32th CBM Collaboration Meeting, 1-5 October 2018, GSI, Darmstadt