Measurement of electroweak boson production in pp, p+Pb and Pb+Pb collisions with the ATLAS detector.

Piotr Janus on behalf of the ATLAS Collaboration

AGH University of Science and Technology, Cracow, Poland

22-26.10.2018

Electroweak bosons:

- high-precision test of pQCD (pp),
- the nuclear modifications to PDF can be investigated (*p*+Pb, Pb+Pb),
- provides information on centrality and geometry of p+Pb and Pb+Pb systems (T_{AA} scaling) as EW bosons are insensitive to final state interactions,
- with LHC energies, a range of photon spectra can be measured in a broader scope.

ATLAS detector & data

- Muon, electron and photon triggers are designed to collect high-p_T objects.
- Measurements of electroweak bosons are based on:
 - $pp: \sqrt{s} = 5.02 \text{ TeV}$ (25 pb^{-1})
 - *p*+Pb: √s = 8.16 TeV (0.16 pb⁻¹)
 - Pb+Pb: $\sqrt{s} = 5.02 \text{ TeV}$ (0.49 nb⁻¹)

Z bosons in pp at 5.02 TeV

- 15 GeV single electron trigger and 14 GeV single muon trigger
- isolated and good quality leptons
- $p_{\rm T}^{e(\mu)}>$ 20 GeV, $|\eta_e|<$ 1.37 or 1.52 $<|\eta_e|<$ 2.47, $|\eta_\mu|<$ 2.4
- opposite-charge dilepton pairs in mass range: $66 < m_{\ell\ell} < 116 \text{ GeV}$
- ~ 4800 (7400) $Z \rightarrow e^+e^- (Z \rightarrow \mu^+\mu^-)$ candidates
- subtracted backgrounds ($Z \rightarrow \tau^+ \tau^-$, $t\bar{t}$ and dibosons from MC, multi-jet from data) at the level of 0.3%
- corrections for trigger, reconstruction and isolation efficiencies

W bosons in pp at 5.02 TeV

- 15 GeV single electron trigger and 14 GeV single muon trigger
- isolated and good quality leptons (exactly one per event veto on Z boson candidates)
- $p_{
 m T}^{e(\mu)}>25$ GeV, $|\eta_e|<1.37$ or $1.52<|\eta_e|<2.47,$ $|\eta_\mu|<2.4$
- $E_{
 m T}^{miss} > 25$ GeV, $m_{
 m T} > 40$ GeV
- ~ 38000 (44000) $W^+ \rightarrow e^+ \nu \ (W^+ \rightarrow \mu^+ \nu)$ candidates
- ~ 24000 (27000) $W^- \rightarrow e^- \nu \ (W^- \rightarrow \mu^- \nu)$ candidates
- subtracted backgrounds: 2-6% EW, top-quark and diboson estimated from MC, 0.1-1.4% multi-jet estimated with data-driven method
- corrections for trigger, reconstruction and isolation efficiencies, as well as missing energy calibration

arXiv:1810.08424

Z bosons in pp - differential cross section

- Rapidity differential cross-sections measured in fiducial phase-space volume.
- Combined results are compared with several theory predictions (different PDF sets) calculated at NNLO using an optimised version of DYNNLO 1.5.
- At central rapidities (|y_{ℓℓ}| < 1) all predictions tend to underestimate measured cross-sections.
- At larger rapidities good agreement with most considered PDF sets.
- High precision measurement.

arXiv:1810.08424

cross-sections.

W bosons in pp - differential cross section

- Lepton pseudorapidity differential cross-sections measured in fiducial phase-space volume.
- Predictions (except using HERAPDF 2.0) systematically tend to underestimate measured cross-sections, but deviations are at the level of 1-2*σ*.
- Similar observations made in previous ATLAS measurements at 7 and 13 TeV.
- High precision measurement.

Piotr Janus (AGH UST)

Z bosons in Pb+Pb at 5.02 TeV

- 8 GeV single muon trigger
- good quality muons
- $p_{
 m T}>$ 20 GeV, $|\eta|<$ 2.5
- opposite-charge dilepton pairs in mass range: 66 < m_{µ+µ} < 116 GeV
- \sim 5500 $Z \rightarrow \mu^+ \mu^-$ candidates
- subtracted backgrounds $(Z \rightarrow \tau^+ \tau^-, t\bar{t} \text{ and}$ dibosons from MC, multi-jet from data) at the level of 0.5%
- corrections for trigger and reconstruction efficiencies

ATLAS-CONF-2017-010

Piotr Janus (AGH UST)

Z bosons in Pb+Pb - rapidity and centrality yields

- Rapidity differential yields per minimum-bias event divided by $\langle T_{AA} \rangle$ to compare with *pp* cross-sections.
- Mostly consistent with $\langle T_{AA} \rangle$ scaling only peripheral bin is somewhat high ($\sim 1.5\sigma$).
- Caveat: preliminary results on *pp* cross-sections used to construct *R*_{AA}.

- Yields per minimum-bias event divided by (T_{AA}) as a function of N_{part} integrated in |y_Z| < 2.5.
- High-precision measurement: uncertainties related to Z bosons smaller than normalisation uncertainties.
- Most peripheral bin shows a hint of excess, otherwise no significant dependence of scaled yields or *R*_{AA} on centrality observed.

W bosons in Pb+Pb at 5.02 TeV

- 15 GeV single muon trigger
- isolated and good quality muons
- $p_{
 m T}>25$ GeV, $0.1<|\eta|<2.4$
- $p_{\mathrm{T}}^{\mathrm{miss}} > 25 \; \mathrm{GeV}$
- $m_{\mathrm{T}} > 40$ GeV, where $m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\mu} \rho_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos(\Delta \phi))}$
- ~ 25000 (23000) $W^+ \rightarrow \mu^+ \nu \ (W^- \rightarrow \mu^- \nu)$ candidates
- subtracted backgrounds: 2-3% EW and tt
 estimated from MC, 6-12% multi-jet
 estimated with data-driven method
- corrections for trigger, reconstruction and isolation efficiencies, as well as MET resolution effects

W bosons in Pb+Pb - rapidity yields

- Lepton pseudorapidity differential yields per minimum-bias event divided by $\langle T_{AA} \rangle$ for fiducial phase-space volume: $\rho_T > 25$ GeV, $\rho_T^{miss} > 25$ GeV, $m_T > 40$ GeV.
- Comparisons with several theory predictions:
 - CT10 free-nucleon PDFs (Powheg+Pythia8, NLO scaled to NNLO)
 - EPPS16 and nCTEQ15 nPDFs (both MCFM, NLO)
- Best agreement with NLO calculation obtained with free-nucleon PDFs scaled to NNLO results, while NLO calculations with nPDFs are somewhat below data.

W bosons in Pb+Pb - centrality yields

- Fiducial yields per minimum-bias event divided by ⟨T_{AA}⟩ (integrated in 0.1 < |ηµ| < 2.4).
- Similarly to Z bosons, most peripheral bin shows a hint of excess.
- Otherwise no significant dependence of scaled yields on centrality observed.
- Predictions from Powheg+Pythia8 including isospin effect and scaled to NNLO agree with data.

ATLAS-CONF-2017-067

Prompt photons in p+Pb at 8.16 TeV

- single photon triggers with 4 thresholds from 20 to 35 GeV
- good quality photons and passing isolation criterion: $E_{\rm T}^{\rm iso} < 4.8 \text{ GeV} + 4.2 \times 10^{-3} E_{\rm T}^{\gamma}/GeV$
- $E_{\mathrm{T}}^{\gamma} > 25~\mathrm{GeV}$
- $|\eta^{\gamma}| < 1.37$, $1.56 < |\eta^{\gamma}| < 2.37$
- rapidity boost by $\Delta y = \pm 0.465$
- corrections for trigger, reconstruction and isolation efficiencies, as well as bin migration in $E_{\rm T}^{\gamma}$

$R_{p\mathrm{Pb}}$ (I)

- ${\it R_{
 m
 ho Pb}}$ as a function of ${\it E_{
 m T}^{\gamma}}$ and η^*
- At mid-rapidity, the $R_{p\rm Pb}$ is consistent with unity (isospin or other nuclear effects are small).

$$R_{
m pPb} = rac{d\sigma^{
m p+Pb
ightarrow \gamma + X}/dE_{
m T}^{\gamma}}{A \cdot d\sigma^{
m pp
ightarrow \gamma + X}/dE_{
m T}^{\gamma}}$$

- At high $E_{\rm T}^{\gamma}$ at backward pseudorapidity, the $R_{\rm pPb}$ is significantly lower than unity.
- This effect is driven by the different isospin composition of *pp* and *p*+Pb systems.
- Comparison to initial state energy loss model. Data disfavour a large suppression due to energy loss effects.

14 / 19

$R_{p\mathrm{Pb}}$ (II)

- Comparison to CT14, nCTEQ15 and EPPS16.
- Data are consistent with the free proton PDFs and with the small effects expected from a nuclear modification of the parton densities.

15 / 19

- Presented ATLAS measurements of electroweak boson production in *pp*, *p*+Pb and Pb+Pb collsions.
- *pp* collisions:
 - New measurement will serve as high-precision baseline for Pb+Pb results.
 - Expect improved *R*_{AA} measurements.
 - Theory predictions calculated with different PDF sets at NNLO tend to systematically understimate measured cross-sections similar behaviour observed in ATLAS measurements at 7 and 13 TeV.
- *p*+Pb collisions:
 - R_{pPb} consistent with unity at mid-rapidity range.
 - It is in agreement with JETPHOX with the EPPS16/nCTEQ15 nPDFs while data disfavour large suppression due to energy loss effects.
- Pb+Pb collisions:
 - Measurements consistent with expectations from *T*_{AA} scaling, no significant dependence of yields on centrality (except most peripheral collisions).
 - With current uncertainties there is little experimental sensitivity to nPDFs.

Backup slides

Fiducial and total cross-section predictions for W^+ , W^- and Z

PDF set	$\sigma^{\rm fid}_{W^+}[{\rm pb}]$	$\sigma^{\rm fid}_{W^-}[{\rm pb}]$	$\sigma_Z^{\rm fid} [{\rm pb}]$	$\sigma_{W^+}^{\rm tot}[{\rm pb}]$	$\sigma_{W^{-}}^{\mathrm{tot}}\left[\mathrm{pb}\right]$	$\sigma_Z^{\rm tot}[{\rm pb}]$
CT14 NNLO	2203_{-64}^{+62}	1379_{-42}^{+34}	356^{+8}_{-10}	4299^{+112}_{-113}	2862^{+63}_{-77}	648^{+14}_{-16}
MMHT2014	2244_{-39}^{+40}	1393^{+24}_{-28}	363^{+6}_{-5}	4357_{-73}^{+75}	2902_{-57}^{+49}	660^{+11}_{-10}
NNPDF3.1	2186 ± 45	1344 ± 29	355 ± 7	4301 ± 87	2828 ± 62	645 ± 13
HERAPDF2.0	2291^{+92}_{-61}	1440_{-27}^{+42}	369^{+14}_{-7}	4459^{+180}_{-108}	3042^{+94}_{-56}	675_{-13}^{+24}
Additional uncertainties						
$\alpha_{ m S}$	± 17	$^{+13}_{-11}$	$^{+3}_{-2}$	$^{+31}_{-29}$	$^{+27}_{-22}$	± 5
$\mu_{\rm\scriptscriptstyle R},\mu_{\rm\scriptscriptstyle F}$ scales	$^{+18}_{-11}$	$^{+11}_{-8}$	± 1	$^{+25}_{-36}$	$^{+13}_{-15}$	$^{+3}_{-4}$
Data	2266 ± 53	1401 ± 33	374.5 ± 8.6	_	-	_

arXiv:1810.08424

Piotr Janus (AGH UST)

