

Prediction of particle production in pp collisions at MPD/NICA

Katherin Shtejer Díaz On behalf of the MPD Collaboration

IV International Conference on Particle Physics and Astrophysics (ICPPA-2018) October 22 – 26, 2018 Moscow, Russia MPD: designed to accomplish a wide range of tasks of the NICA physics program.

Collisions in a wide range of atomic mass: A = 1 - 197.

Maximum centre-of-mass energy	Average luminosity
$\sqrt{s_{NN}}$ = 11 GeV (Au ⁷⁹⁺)	$L = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$
$\sqrt{s_{NN}} = 27 \text{ GeV} (p)$	$L = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

The proton-proton collisions are in the MPD/NICA research program!

 $0 \rightarrow \leftarrow 0$

- Baseline for nucleus nucleus interaction analysis.
- A good tool for detector performance studies.
- Study of fluctuations and correlations of inmedium properties as function of the system size.
- RAA nuclear modification factor
- o Horn effect, etc

pp collisions @ $\sqrt{s} = 6 - 25$ GeV

UrQMD 3.4

(Ultra Relativistic Quantum Molecular Dynamics)

S. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998) M. Bleicher et al., J. Phys. G 25, 1859 (1999)

EPOS 1.99

(Energy conserving quantum mechanical multiple scattering approach, based on Partons (parton ladders), Off-shell remnants, and Splitting of parton Ladders) Combines parton model and Gribov-Regge theory.

> K. Werner, F. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006) T. Pierog, K. Werner, Nucl. Phys. B (Proc. Suppl.) 196, 102 (2009)

Event generation

(models)

MC transport (*MpdRoot: GEANT*)

Reconstruction

(*CF* - *KF*)

Rapidity spectra

pp @ \sqrt{s} = 17.3 GeV dN/dv vs. y distributions of $\pi^+, K^+, p, \pi^-, K^-, \bar{p}$

2.5

2.5

3

V

3

MC simulations in MPD/NICA compared with exp. data from NA61/SHINE

 \circ UrQMD 3.4 overpredicts the K⁻ data for 0.2 < |y| < 1.4.

- EPOS 1.99 systematically agrees with p data except at foward beam rapidity, while systematically describes with \bar{p} data except for mid-rapidity.
- UrQMD overestimates p data in a wide rapidity range and underpredicts it at forward rapidity.
- At mid-rapidity both models predict values larger than the p data and lower than \bar{p} data.

October 22 - 26, 2018

K. Shtejer, ICPPA-2018

Rapidity and transverse momentum

pp @ \sqrt{s} = 17.3 GeV (π^+, K^+, p)

 p_T distributions were determined in rapidity intervals

MC simulations in MPD/NICA compared with exp. data from NA61/SHINE

Rapidity and transverse momentum

pp @ \sqrt{s} = 17.3 GeV (π^-, K^-, \bar{p})

 p_T distributions were determined in rapidity intervals

MC simulations in MPD/NICA compared with exp. data from NA61/SHINE

Mean multiplicity vs collision energy

Horn effect

Rapid change of K^+/π^+ ratio of NN collisions at NICA energies \rightarrow posible signature of deconfinement There is a slight plateau-like structure for p+p (in exp. Data from NA61 and EPOS 1.99 prediction). EPOS 1.99 generator provides better agreement with p+p experimental data. UrQMD 3.4 underestimates K^+/π^+ ratio at $\sqrt{s} < 12$ GeV and overestimates K^-/π^- ratio in all the \sqrt{s} range.

MPD performance in pp collisions

*Software written by Alexander Zinchenko

*PID implemented in MPDRoot by A. Mudrokh and A. Zinchenko

Λ^0 hyperon simulation

MC simulation (MPDRoot: EPOS-1.99 generator + Geant3), compared with NA61 experimental data.

Λ^0 hyperon reconstruction

Λ^0 hyperon reconstruction in bins of p_{T}

Summary

- The production of p, p
 , π[±] and K[±] from pp @ 6 25 GeV was predicted through the spectra and multiplicities simulated by Monte Carlo in MPD/NICA. Comparison between predictions of two models, EPOS-1.99 and UrQMD-3.4, as well as with recent experimental results from NA61/SHINE were performed.
- EPOS 1.99 provides a reasonable description of the experimental data while UrQMD exhibits more discrepancies.
- Monte Carlo simulation of Λ^0 hyperon production from p+p collisions in MPD using EPOS 1.99 generator at $\sqrt{s} = 6 25$ GeV, describes quite well experimental data reported in the literature.
- The reconstruction of the Λ^0 hyperon in the MPD geometrical acceptance given by the TPC and TOF detectors and using the PID method implemented in MPDRoot, gives rise to a well defined signal.
- Performance study of MPD for pp collisions revealed a good track finding efficiency and momentum resolution, as well as a good particle identification efficiency with the combined method.
- A systematic study of p+p collisions at the NICA energy range should provide a reference baseline, diagnostic observables from p+p collisions as well as a tool for testing and constraining model parameters describing hadron production mechanisms at lower energies.