Search for the critical behavior at NA61/SHINE

Daria Prokhorova for NA61/SHINE Collaboration

Laboratory of Ultra-High Energy Physics, St. Petersburg State University

IV International Conference on Particle Physics and Astrophysics 26 October 2018

NA61/SHINE Experiment

Schematic picture of the NA61/SHINE experiment NA61 JINST 9: 06005

- NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a particle physics fixed-target experiment at CERN SPS
- Scan in beam momenta (13A 150/158A GeV/c) and system size (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb)
- Large acceptance hadron spectrometer full coverage in the forward hemisphere (down to $p_T = 0 \text{ GeV}/c$)
- Centrality selection in A+A collisions by measuring of forward energy with Projectile Spectator Detector (PSD)

Event browser http://shine3d.web.cern.ch/shine3d/ 2/17

Strong interactions programme at NA61/SHINE

Baryon density

Sketch of the phase diagram of strongly interacting matter

- study the properties of the onset of deconfinement
- search for the critical point (CP) of strongly interacting matter

What is the CP signal amplitude? What if it is shadowed by volume fluctuations?

Search for the critical behavior at NA61/SHINE

- Multiplicity and transverse momentum
 fluctuations (p+p @20 158 GeV/c, ⁷Be+⁹Be @150A
 GeV/c)
- 2. Femtoscopy studies (⁷Be+⁹Be @150A GeV/c)

- - Measure spatial correlations within Bose-Einstein momentum correlations with Levy source

pseudorapidity dependence study

- 3. Intermittency analysis (NA49, ⁷Be+⁹Be and Ar+Sc 150/158A GeV/*c*)
- Study of local power-law fluctuations of baryon density

Search for non-monotonic behavior of CP signatures via

4. Two-particle correlations (7Be+9Be @13A – 150A

Study in $\Delta \eta$ - $\Delta \varphi$ space to disentangle different sources of

correlations

Daria Prokhorova for NA61/SHINE Collaboration

GeV/c)

22-26 October 2018, ICPPA, Moscow

Fluctuation studies: proper measures

Intensive fluctuation measure: independent of the number of sources or the system volume $\omega[N] = 1$ for the Poisson distribution of A, $\omega[N] = 0$ in the absence of A fluctuations

Strongly intensive fluctuation measures:

- Independent of the volume and its fluctuations in Ideal Boltzmann gas in Grand Canonical Ensemble (IBG GCE)
- $\Sigma[P_T, N] = \Delta[P_T, N] = 1$ for independent particle model
- $\Sigma[P_T, N] = \Delta[P_T, N] = 1$ for the IBG in GCE and CE
- $\Sigma[P_T, N] = \Delta[P_T, N] = 0$ in the absence of fluctuations

$$\omega[\mathbf{N}] = \frac{\langle \mathbf{N}^2 \rangle - \langle \mathbf{N} \rangle^2}{\langle \mathbf{N} \rangle}$$

Gazdzicki et al. PRC 88:024907

$$\Sigma[P_{T}, N] = \frac{1}{C_{\Sigma}} \left[\langle N \rangle \omega[P_{T}] + \langle P_{T} \rangle \omega[N] - 2 \cdot \left(\langle P_{T} \cdot N \rangle - \langle P_{T} \rangle \langle N \rangle \right) \right]$$
$$\Delta[P_{T}, N] = \frac{1}{C_{\Delta}} \left[\langle N \rangle \omega[P_{T}] - \langle P_{T} \rangle \omega[N] \right], \qquad C_{\Sigma} = C_{\Delta} = \langle N \rangle \omega(p_{T})$$

Possible sensitivity: nucleon system with van der Waals EOS in GCE formulation in the vicinity of the Critical Point

Vovchenko, Gorenstein, Stoecker, PRL 118: 182301, Vovchenko, et al., JPA 48: 305001

Daria Prokhorova for NA61/SHINE Collaboration

Fluctuation studies: results and analysis extension

No prominent structures which could be related to the critical point. Should we extend the analysis?

Andronov, Acta Phys. Pol. B Proc. Suppl. 10 449

Since each rapidity is associated with a different value of μ and therefore **probes a different part of the (\mu-T)** phase diagram ..

Becattini F, Manninen J and Gazdzicki M PRC 73 044905

and the ratio of p and \overline{p} in inelastic p + p at the SPS energies changes significantly with rapidity

Let's study **pseudorapidity dependence of fluctuations**

Daria Prokhorova for NA61/SHINE Collaboration

Fluctuation studies: pseudorapidity dependence

Daria Prokhorova for NA61/SHINE Collaboration

Daria Prokhorova for NA61/SHINE Collaboration

Femtoscopy: critical exponents

History:

R. Hanbury Brown, R.Q. Twiss observed Sirius with radiotelescopes R. Hanbury Brown and R. Q. Twiss 1956 Nature 178

In high energy physics (G. Goldhaber): momentum q correlation of pions maps source S(q) at femto-scale $C(q) \cong 1 + |\widetilde{S}(q)|^2$ G. Goldhaber et al 1959 Phys.Rev.Lett. 3 181

 $C(q) = 1 + \lambda \cdot e^{-(qR)^{\alpha}}$

Heavy lons: expanding medium, increasing mean free path: anomalous diffusion (Csanad et al., Braz.J.Phys. 37 (2007) 1002)

Levy-stable distribution: $\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$

Levy parameters appearing in correlation function:

- *Levy scale R* determines length of homogeneity
- **Correlation strength** λ describes core-halo ratio

(core: primordial pions, halo: resonance decay products and general background)

- *Levy exponent* α stability exponent determines source shape:
- α = 2: Gaussian, predicted from simple hydro
- α < 2: anomalous diffusion, generalized limit theorem
- α = 0.5: conjectured value at the critical point (CEP)

Spatial correlation at the critical point: ~ $r^{-(d-2+\eta)}$, Levy-exponent α is identical to correlation exponent η

9/17 Csorgo et al., EPJ C36 (2004) 67

22-26 October 2018, ICPPA, Moscow

Intensity correlations as a function of detector distance to measure size of point-like sources

1.4 0.9 Fit function: N(1-λ+(1+e^{-(qR)^α}) λ K_{Coul}(q)) 0.7 0.8 q_{LCMS} (GeV/c)

Femtoscopy: performance results of NA61/SHINE

Daria Prokhorova for NA61/SHINE Collaboration

Intermittency analysis: factorial moments

(uncorrelated) mixed event moments:

 $\Delta F_2(M) \simeq \Delta F_2^{(e)}(M) \equiv F_2^{\mathsf{data}}(M) - F_2^{\mathsf{mix}}(M)$

And for a critical system $\Delta F_2(M)$ scales with cell size (number of cells, M) as:

$$\Delta F_2(M) \sim \left(M^2\right)^{\varphi_2}$$

22-26 October 2018, ICPPA, Moscow

11/17

Daria Prokhorova for NA61/SHINE Collaboration

Intermittency analysis: Ar+Sc at 150A GeV/c

NA61/SHINE preliminary results

Daria Prokhorova for NA61/SHINE Collaboration

Intermittency analysis: summary NA49 and NA61/SHINE

- Indication of intermittency effect in middle-central NA61/SHINE Ar+Sc collisions
- First possible evidence of CP signal in NA61/SHINE
- Effect quality increases with increased proton purity selection (up to 90%), EPOS does not reproduce observed effect

Two-particle correlations: $\Delta \eta - \Delta \varphi$

Study of correlations in azimuthal angle and pseudorapidity difference between two particles in the same event:

• $\Delta \eta = |\eta_1 - \eta_2|$ • $\Delta \phi = |\phi_1 - \phi_2|$ $C^{raw}(\Delta \eta, \Delta \phi) = \frac{N_{bkg}^{pairs}}{N_{signal}^{pairs}} \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)};$ $S(\Delta \eta, \Delta \phi) = \frac{d^2 N^{signal}}{d\Delta \eta d\Delta \phi}; \quad B(\Delta \eta, \Delta \phi) = \frac{d^2 N^{bkg}}{d\Delta \eta d\Delta \phi}$

Note:

- To improve statistics azimuthal angle distribution is folded: if $\Delta \phi > \pi$ then $\Delta \phi$ becomes $\Delta \phi = 2\pi \Delta \phi$
- Signal and background distributions are calculated and normalized in restricted $\Delta\eta$ region: $0 \le \Delta\eta \le 3$
- Correlation functions are mirrored around $(\Delta \eta, \Delta \phi) = (0, 0)$ point in order to emphasize the trend
- Event and track cuts select the 5% most violent collisions with particles produced in strong and EM processes within the NA61/SHINE acceptance

Preliminary results for ⁷**Be+**⁹**Be** are obtained for all charge combinations (all, like-sign, unlike-sign, positively charged, negatively charged) and for the full momentum range (13*A* – 150*A* GeV/*c*). **Comparison (not shown) with published p+p NA61/SHINE data revealed an increase of quantum statistics contribution in higher beam momenta in Be+Be.**

Two-particle correlations: some Be+Be NA61/SHINE data

Preliminary NA61/SHINE results

EPOS1.99 with NA61/SHINE acceptance

B. Maksiak for NA61/SHINE, QM 2018

- Maximum at $(\Delta\eta, \Delta\phi) = (0, \pi)$ – probably resonance decays and momentum conservation
- A hill at (0, 0) in unlike-sign is Coulomb attraction (products of photons conversion were rejected during analysis)
- EPOS reproduces data qualitatively well except of Coulomb peak at $(\Delta\eta, \Delta\phi) = (0, 0)$

Daria Prokhorova for NA61/SHINE Collaboration

22-26 October 2018, ICPPA, Moscow

Two-particle correlations: some Be+Be NA61/SHINE data

75 GeV/c

(ອຸ 1.1 (ອຸປະຊຸມຈຸງ)

0.95

0.9

150 GeV/c

ବ୍ୱି 1.1

<u>الجًا</u> 1.05

0.95

0.9

B. Maksiak for NA61/SHINE, QM 2018

Preliminary NA61/SHINE results

40 GeV/c

ବୁ 1.1

1.05

0.95

- Almost no away-side enhancement: low multiplicity of doublenegative resonances
- Peak at $(\Delta \eta, \Delta \phi) = (0, 0)$ prominent – Bose-Einstein statistics
- EPOS does not reproduce peak at $(\Delta \eta, \Delta \phi) = (0, 0)$ due to lack of implementation of quantum statistics

Daria Prokhorova for NA61/SHINE Collaboration

EPOS1.99 with NA61/SHINE acceptance

ବୁ 1.1

<u>ر</u> 1.05

0.95

30 GeV/c

19 GeV/c

0.95

0.9

22-26 October 2018, ICPPA, Moscow

Summary and outlook

- Results on system size vs. energy dependence of N and [P_T, N] fluctuations for particles produced in strong processes within the NA61/SHINE acceptance show no indication of the critical point so far
- Pseudorapidity dependence of fluctuation measures revealed a **significant discrepancy** between p+p and Be+Be data and EPOS1.99 for $\Delta[P_T, N]$ measure
- Two-particle correlations revealed two main structures:
- away-side enhancement due to momentum conservation and resonance decays
- **near-side peak** due to Coulomb attraction in unlike-sign pairs of particles and quantum statistics in like-sign ones (problematic in EPOS1.99 simulations)
- First measurements of **Levy HBT** within NA61/SHINE acceptance performance results!
- Indication of intermittency effect in middle-central NA61/SHINE Ar+Sc collisions:
 First possible evidence of CP signal at NA61/SHINE ?

Stay tuned and have a SHINY day!

This work is supported by the Russian Science Foundation, grant 17-72-20045

Daria Prokhorova for NA61/SHINE Collaboration

Back up slides

First released Intermittency results of preliminary analysis in Ar+Sc at 150A GeV/*c* at CPOD 2018, **details**:

https://indico.cern.ch/event/760216/contributions/3153684/attachments/1721653/2779754/Davis_CPOD2018.pdf

Event & Track cuts

Event cuts

- Target IN/OUT,
- BPD status,
- WFA particles (4.5 μs),
- WFA interaction (25 μs),
- BPD3X(Y) charge,
- S5 $(0 \rightarrow 170)\text{,}$
- T2 trigger (eAll),

N. Davis (IFJ PAN)

- Vertex track fitted to the main vertex,
- Vertex fit quality = ePerfect,
- $\bullet\,$ Fitted vertex position -580 ± 10 cm,
- PSD Module Energy Sum cut (inner/outer),
- Centrality 0-20% (based on PSD)
- nTracksFit/nTracksAll > 0.25 if nTracksFit ≤ 50 (Andrey)

Track cuts

- Track status,
- \bullet Charge ± 1 ,
- Impact point $[\pm 4cm; \pm 2cm]$,
- Total number of clusters \geq 30,
- $\bullet~{\sf VTPCs}~{\sf clusters} \geq 15$,
- NO GTPC clusters,
- dE/dx clusters \geq 30,
- $0.5 \le \frac{\#Points}{\#Potential Points} \le 1.0$
- TTD cut $> 2 \ cm$

NA61/SHINE intermittency analysis

- dE/dx \leq 1.8 (dE/dx fit issue)
- proton selection (scan)
- 3.98 GeV/c $\leq p_{tot} \leq$ 126 GeV/c (for dE/dx proton ID - scan)

Daria Prokhorova for NA61/SHINE Collaboration

September 24, 2018 36 / 27

Event & Track cuts – EPOS

Event cuts

- Target IN/OUT,
- BPD status,
- Vertex track fitted to the main vertex,
- Vertex fit quality = ePerfect,
- Fitted vertex position -580 ± 10 cm,
- Centrality 10% (based on nFSpec)

Track cuts

- Track status,
- Charge ± 1 ,
- Impact point [±4cm; ±2cm],
- Total number of clusters \geq 30,
- VTPCs clusters \geq 15,
- NO GTPC clusters,
- TTD cut > 2 *cm*,
- proton selection matching closest simTrack,
- 3.98 GeV/c ≤ p_{tot} ≤ 126 GeV/c (to match effect of dE/dx p_{tot} cut),
- acceptance cut

Split tracks & the q_{inv} cut

- Events may contain split tracks: sections of the same track erroneously identified as a pair of tracks that are close in momentum space.
- Three cuts to root them out:
 - Ratio of points / potential points in a track (removes most)
 - O Minimum track distance in the detector (pair cut)
 - **3** q_{inv} cut (pair cut, physics-significant)
- q_{inv} distribution of track pairs probed in order to root the rest out:

 $q_{inv}(p_i, p_j) \equiv \frac{1}{2} \sqrt{-(p_i - p_j)^2}, p_i$: 4-momentum of i^{th} track.

• We calculate the ratio of
$$q_{inv}^{data} / q_{inv}^{mixed}$$

Daria Prokhorova for NA61/SHINE Collaboration

Split tracks & the q_{inv} cut

- A peak at low q_{inv} (below 20 MeV/c) indicates a possible split track contamination that must be removed.
- Anti-correlations due to F-D effects and Coulomb repulsion must be removed before intermittency analysis ⇒ "dip" in low q_{inv}, peak predicted around 20 MeV/c [Koonin, PLB 70, 43-47 (1977)]
- Universal cutoff of $q_{inv} > 7 \text{ MeV/c}$ applied to all sets before analysis.

Daria Prokhorova for NA61/SHINE Collaboration

Δp_T distributions: NA61 data vs EPOS

• Ar+Sc at 150A GeV/c: $\Delta p_T = 1/2 \sqrt{(p_{X_1} - p_{X_2})^2 + (p_{Y_1} - p_{Y_2})^2}$ distributions of protons selected for intermittency analysis

• In NA61 data, we see strong correlations in $\Delta p_T \rightarrow 0 \Rightarrow$ indication of intermittent behaviour

Daria Prokhorova for NA61/SHINE Collaboration

NA61/SHINE intermittency analysis

September 24, 2018 18 / 27

Δp_T distributions & $F_2(M)$: NA61 data vs EPOS

Daria Prokhorova for NA61/SHINE Collaboration

eptember 24, 2018 19 / 27

Daria Prokhorova for NA61/SHINE Collaboration

Daria Prokhorova for NA61/SHINE Collaboration

NA61/SHINE: Ar+Sc at 150A GeV/c: ϕ_2 bootstrap dist.

Daria Prokhorova for NA61/SHINE Collaboration

Ar+Sc EPOS: $F_2(M)$, $\Delta F_2(M)$, ϕ_2 bootstrap distribution

Daria Prokhorova for NA61/SHINE Collaboration

September 24, 2018 24 / 27

Improving calculation of $F_2(M)$ via lattice averaging

 Problem: With low statistics/multiplicity, lattice boundaries may split pairs of neighboring points, affecting F₂(M) values (see example below).

NA61/SHINE intermittency analysis

- Solution: Calculate moments several times on different, slightly displaced lattices (see example)
- Average corresponding F₂(M) over all lattices. Errors can be estimated by variance over lattice positions.
- Lattice displacement is larger than experimental resolution, yet maximum displacement must be of the order of the finer binnings, so as to stay in the correct p_T range.

N. Davis (IFJ PAN)

September 24, 2018 47 / 27

Mixing for:

$$\Delta F_2(M) \simeq \Delta F_2^{(e)}(M) \equiv F_2^{\mathsf{data}}(M) - F_2^{\mathsf{mix}}(M)$$

- 1. Set of 1...N events with n_i with i = 1...N multiplicity in i-th event
- 2. Going through all events: label each particle with number 1 ... N_particles (N_particles = sum of n_i for I = 1...N) and associate number of the event it belongs to
- 3. To create mixed event with multiplicity n_m we do:
- a) Select a particle randomly from the N_particles
- b) Check that its event label is different than ALL previously selected particles for THIS mixed event
- c) If it is, add particle to this mixed event; if it is not, we have a conflict, so we reject this particle and go back to step a)d) Repeat until the desired multiplicity n_m has been reached

4. Repeat process until we have the desired number of mixed events (typically >10 times the original number of events)