WHY THE HYDRODYNAMICS IS VALID IN HEAVY-ION COLLISIONS ?

L. Bravina, <u>E. Zabrodin</u>

ниияф мгу

UiO : Universitetet i Oslo

IV-th International Conference on Particle Physics and Astrophysics (Moscow, Russia, 22-26.10.2018)

Dynamic Regimes

Parton distribution, Nuclear geometry Nuclear shadowing

Parton production & regeneration (or, sQGP)

Chemical freeze-out (Quark recombination)

Jet fragmentation functions

Hadron rescattering

Thermal freeze-out

Hadron decays

Models at our disposal Relativistic Hydrodynamics

Relativistic Hydrodynamics

Basic Equations

Energy-momentum tensor

$$\mathbf{T}^{\mu\nu} = \underbrace{(\varepsilon + \mathbf{P})\mathbf{u}^{\mu}\mathbf{u}^{\nu} - \mathbf{P}\mathbf{g}^{\mu\nu}}_{\mathbf{Q}} + \underbrace{\eta^{\mu\nu}}_{\mathbf{Q}}$$

inertial dissipative

The space-time evolution of relativistic fluid is described by the set of differential equations

$$\partial_{\mu} \mathbf{N}^{\mu}(\mathbf{x}) = \mathbf{0}$$

 $\partial_{\mu} \mathbf{T}^{\mu
u} = \mathbf{0}; \ \mu,
u = \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}$

For perfect fluid (i.e. $\eta^{\mu\nu} = 0$) these equations take the familiar form

$$\begin{aligned} (\partial_t + \vec{\mathbf{v}} \cdot grad)\mathcal{N} &= -\mathcal{N}div\vec{\mathbf{v}} & \mathcal{N} \equiv \gamma \,\mathbf{N}^{\mu}\mathbf{u}_{\mu} \\ (\partial_t + \vec{\mathbf{v}} \cdot grad)\vec{\mathcal{M}} &= -\vec{\mathcal{M}} \cdot div\vec{\mathbf{v}} - grad\,\mathbf{P} & \vec{\mathcal{M}} \equiv \mathbf{T}^{\mathbf{0}\mathbf{i}} = (\varepsilon + \mathbf{P})\gamma^2\vec{\mathbf{v}} \\ (\partial_t + \vec{\mathbf{v}} \cdot grad)\mathcal{E} &= -\mathcal{E}div\vec{\mathbf{v}} - div(\mathbf{P}\vec{\mathbf{v}}) & \mathcal{E} \equiv \mathbf{T}^{\mathbf{0}\mathbf{0}} = (\varepsilon + \mathbf{P}\vec{\mathbf{v}}^2)\gamma^2 \end{aligned}$$

$$\partial_{\mu} \mathbf{N}^{\mu}(\mathbf{x}) = \mathbf{0}$$

 $\partial_{\mu} \mathbf{T}^{\mu
u} = \mathbf{0}; \ \mu,
u = \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}$

Number of variables – 6

$$\mathbf{T}^{\mu\nu} = \underbrace{(\varepsilon + \mathbf{P})\mathbf{u}^{\mu}\mathbf{u}^{\nu} - \mathbf{P}\mathbf{g}^{\mu\nu}}_{\mathbf{V}}$$

(2)

Number of equations – 4

Missing equations:

(1) EOS, that links energy density and pressure

Using the thermodynamic relations

$$\varepsilon + \mathbf{P} = \mathbf{Ts}, \quad \mathbf{d}\varepsilon = \mathbf{Tds},$$

where s is the entropy density in the local rest frame, we find

$$\frac{\mathbf{ds}}{\mathbf{d\tau}} = -\frac{\mathbf{s}}{\tau}, \quad \longrightarrow \mathbf{s}(\tau) = \mathbf{s}(\tau_0) \frac{\tau_0}{\tau}$$

Consequently, expansion proceeds adiabatically: S = sV = const

EOS: $P = \varepsilon/3$ - ultrarelativistic gas. The basic equation reduces to

$$\frac{\partial \varepsilon}{\partial \tau} = -\frac{4}{3} \frac{\varepsilon}{\tau} , \quad \longrightarrow \varepsilon(\tau) = \varepsilon(\tau_0) \left(\frac{\tau_0}{\tau}\right)^{4/3}$$

Note: volume increases $\propto au$, while energy density drops $\propto au^{-4/3}$!

Models at our disposal Microscopic Transport Models

Initial Particle Production in UrQMD

The Quark-Gluon String Model (QGSM)

- microscopic model, based on Gribov-Regge theory (GRT)
- interaction is modelled via the exchange of reggeons and pomenrons

the production of particles is described with the excitation and decay of color neutral strings

Central cell: Relaxation to (local) equilibrium

Pre-equilibrium: Homogeneity of baryon matter L.Bravina et al., PRC 60 (1999) 024904

The local equilibrium in the central zone is quite possible

Equilibration in the Central Cell

 $t^{cross} = 2\mathbf{R}/(\gamma_{cm} \beta_{cm})$ $t^{eq} \ge t^{cross} + \Delta z/(2\beta_{cm})$

L.Bravina et al., PLB 434 (1998) 379; JPG 25 (1999) 351 **Kinetic equilibrium:** Isotropy of velocity distributions **Isotropy of pressure**

Thermal equilibrium:

Energy spectra of particles are described by Boltzmann distribution

$$\frac{dN_i}{4\pi pEdE} = \frac{Vg_i}{(2\pi\hbar)^3} \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Chemical equlibrium:

Particle yields are reproduced by SM with the same values of $(T, \ \mu_B, \ \mu_S)$:

$$N_i = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 dp \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Statistical model of ideal hadron gas

Kinetic Equilibrium

Isotropy of pressure

L.Bravina et al., PRC 78 (2008) 014907

Pressure becomes isotropic for all energies from 11.6 AGeV to 158 AGeV

Kinetic Equilibrium in a Small Cell

Isotropy of pressure

Longitudinal and transverse pressures in a small cell (4x4x1)fm³ converge at the same rate as those in a larger cell (5x5x5)fm³

Thermal and Chemical Equilibrium

Thermal and chemical equilibrium seems to be reached

Infinite hadron gas: a box with periodic boundary conditions

BOX WITH PERIODIC BOUNDARY CONDITIONS

Initialization: (i) nucleons are uniformly distributed in a configuration space; (ii) Their momenta are uniformly distributed in a sphere with random radius and then rescaled to the desired energy density. M.Belkacem et al., PRC 58, 1727 (1998)

Model employed: UrQMD 55 different baryon species $(N, \Delta, hyperons and their$ resonances with $m \leq 2.25 \text{ GeV}/c^2$), 32 different meson species (including resonances with $m \le 2 \text{ GeV}/c^2$) and their respective antistates. For higher mass excitations a string mechanism is invoked.

Test for equilibrium: particle yields and energy spectra

THERMAL AND CHEMICAL EQUILIBRIUM

Box calculations are on the top of the cell results

Equation of State T vs. energy, etc

Isentropic expansion

Expansion proceeds isentropically (with constant entropy per baryon). This result supports application of hydrodynamics

 $s/\rho_B = const = 12(AGS), 20(40), 38(SPS)$

Conclusions

- *MC* models favor early pre-equilibration of hot and dense nuclear matter already at $t \approx 2$ fm/c
- After that the expansion of matter in the central cell proceeds isentropically with constant S/ρ_B (hydro!)
- The EOS has a simple form: P/ε = const (hydro!) even at far-from-equilibrium stage
- The speed of sound C²_s varies from 0.12 (AGS) to 0.14 (40 AGeV), and to 0.15 (SPS & RHIC) => saturation
- Good agreement between the cell and box results

Back-up Slides

Lorentz-invariant solution

J.D. Bjorken, Phys. Rev. D 27 (1983) 140
 E.P.T. Liang, Astrophys. J. 211 (1977) 361

Initial conditions, assumptions:

- the system expands into vacuum (i.e. no walls, pistons, etc)
- the system occupies initial volume V₀, which possesses certain symmetry (e.g., rectangular box, cylinder, or sphere) - otherwise the hydrodynamic equations are too cumbersome to be solved analytically
 But: such initial conditions are relativistically non-invariant.

Let us introduce proper time $\tau = t/\gamma = \sqrt{t^2 - x^2}$ and assume that the initial conditions depend only on τ_0 and that the macroscopic variables $(T, \varepsilon, P, ...)$ are functions of τ . For simplicity, consider the one-dimensional case $x^{\mu} = (t, 0, 0, z), \ u^{\mu} = \frac{1}{\tau}(t, 0, 0, z)$. From the equations of perfect fluid

$$\partial_{\mu}\mathbf{T}^{\mu
u}=\mathbf{0}$$

we get

$$\frac{\partial \varepsilon}{\partial \tau} = -\frac{\varepsilon + \mathbf{P}}{\tau}, \qquad \varepsilon(\tau_0) = \varepsilon_0$$

This is the basic differential equation of Bjorken hydrodynamic model.

Bibliography:

Microscopic models and effective equation of state in nuclear collisions at FAIR energies L.V. Bravina et al.. Phys. Rev. C78 (2008) 014907; DOI: 10.1103/PhysRevC.78.014907 Equation of state at FAIR energies and the role of resonances E E Zabrodin et al.. J. Phys. G36 (2009) 064065; DOI: 10.1088/0954-3899/36/6/064065 Effective equation of state of hot and dense matter in nuclear collisions around FAIR energy L. Bravina, E. Zabrodin, EPJ Web Conf. 95 (2015) 01003; DOI: 10.1051/epjconf/20159501003