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Some B-factory physics milestones

Exotic hadrons

1st dark searches

Excess in
തܤ → ߥ̅߬(∗)ܦ

Time reversal 
asymmetry

4>100 unique CPV results ~350 papers published after shutdown, 21 in 2018

B-FACTORIES LEGACY
1241 papers (14 Oct. 2018) and counting 

670 from BaBar @ PEP-II + 571 from Belle @ KEKB
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KEYS OF TWO SUCCESSFUL EXPERIMENTS

Large sample ( ~ 1 billion ) of B mesons, tau leptons, charmed particles,  

High luminosity ( KEKB exceeded 2 x 1034 Hz/cm2 ). 

Clean event structure. (e.g. the Y(4S) event is made by just two entangled 
B mesons decaying in the end on average in: 
11 charged tracks, 5 neutral pions and 1 Klong). 

Asymmetric beam energy:  
longitudinally displaced decay vertices of the B mesons. 

Very mild trigger requirements: one tracks and a half from the IP, or some 
relevant activity  in the electromagnetic calorimeter. 

Excellent detector performances.
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A. Brute force: numerator ⤴	(Currents) 1.6A/1.2 A ⤴3.6/2.6 A 

Fundamental limit:  the wall plug power ~  
 proportional to current + Longitudinal Fast Instability 

B. Precision: denominator ⤵ ( luminous region cross section )  
KEKB vertical size ~1.1 μm ⤵ SuperKEKB ~50 nm  
How to squeeze down the bunch to 50 nm?

HOW TO IMPROVE THE BABAR & BELLE RESULTS?
Extend the Physics reach and improve the accuracy of the 
measurement with a larger sample: 

increase in luminosity by a factor 40 by solving:
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Down To 50 nm: Hour Glass Effect
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• KEKB emittance ~ 0.2nm x radiant  
Angular divergence ~ 4 mradiant = 4000 nm / mm

• SuperKEKB nominal emittance ~ 0.010nm x radiant  
Angular divergence ~ 0.2 mradiant = 200 nm / mm = 50 nm / 0.25mm  
How to collide in a luminous region just 0.25 mm long?

Angular Divergence 
x 

 Cross Section Size @ IP 
=  

 Emittance (Characteristic of the Ring)
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THE NANO BEAM COLLISION SCHEME
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FROM KEKB
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LER

HER

Bunches Constant Density Surfaces at the IP
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FROM KEKB TO SUPERKEKB
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LER

HER

Bunches Constant Density Surfaces at the IP
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APRIL 26 2018: FIRST COLLISIONS!
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APRIL 26 2018: FIRST COLLISIONS!
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The scene at the experimental control room in Tsukuba Hall B3

This is scientific history in the making: SuperKEKB/Belle II joins 
DORIS/ARGUS, CESR/CLEO, and  PEP-II/BaBar and KEKB/Belle
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PHASE 2 HISTORY IN A NUTSHELL
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History of SuperKEKB Phase 2 

5.55 x 1033/cm2/s (βy*3mm, LER: 800mA, HER: 780mA, 1576 bunches/beam July 5th) 
2.29 x 1033/cm2/s (βy*3mm, LER: 270mA, HER: 225mA,   394 bunches/beam July 3rd) 

βy
*= 80mm βy

*= 8mm 6mm βy
*= 4mm βy

*= 3mm 

2018/7/23 Monday Meeting 
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Large crossing angle nano-beams 
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KEKB SuperKEKB

As expected, the effective 
bunch length is reduced 
from ~5 mm (KEKB) to  0.5 
mm (SuperKEKB) 
We measure this in 2-track 
events in Belle II data with 
one wedge of the silicon 
detector.

THE WORLD SHORTEST LUMINOUS REGION
Longitudinal impact parameter of  two tracks events:
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 Date

05/03 05/17 05/31 06/14 06/28 07/12

m
)
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3.5  = 8mmy
*

β

 = 6mmy
*

β

 = 4mmy
*

β

 = 3mmy
*

β

SuperKEKB/Belle II
2018 (preliminary)

TOWARD THE SMALLEST LUMINOUS REGION
How to measure the vertical size of the beams?  

Measure the luminosity with our fast diamond detector while the 
machine people moves the beam vertically.
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less than 500 nm 
achieved
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NEXT STEPS

Install additional collimators to reduce the backgrounds 

Install the whole silicon vertex tracker 

Restart the operations in March 2019 

Tune the optics 

Gradually increase the number of bunches and the bunch 
current  

Gradually decrease the vertical size of the bunches at the IP
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LONG TERM PLANS TO ACHIEVE 8 1035 HZ/CM2
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Belle II /superKEKB commissioning
• Phase 1 (finished): Beam operation without final 

focus magnets and Belle II 
– Commissioning of beam transportation  and 

vacuum scrubbing
• Phase 2( 4month): Start data taking with Beam 

collision 
– Target Luminosity ~10^34 cm-2s-1 which is 

comparable with KEKB 
– No final VXD but one ladder/layer with 

background sensors
• Phase 3 (2019): final detector configuration 

8The Belle II Experiment: Status and Prospects

Integrated L :  x 50

25…
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electrons (7 GeV)

positrons (4 GeV)

KLong and muon detector:
Resistive Plate Chambers (barrel outer layers)
Scintillator + WLSF + SiPM’s (end-caps , inner 2 
barrel layers)

Particle Identification 
iTOP detector system (barrel)
Prox. focusing Aerogel RICH (fwd)

Central Drift Chamber
He(50%):C2H6(50%), small cells, long lever 
arm,  fast electronics (Core element)

EM Calorimeter:
CsI(Tl), waveform sampling (barrel+ endcap)

Vertex Detector
2 layers DEPFET + 4 layers DSSD

Beryllium beam pipe
2cm diameter

Belle II Detector 
BEAST (Background 
commissioning detector)

MEANWHILE FROM THE DETECTOR SIDE
Detector calibrations 
Tuning of the reconstruction algorithms 
Rediscovery of the SM particles
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THE TRACKING SYSTEMS IS WORKING WELL
Tracks from the CDC and the VXD available since the start of collisions 

Detector aligned within few weeks 

B field very well measured 

Mass resolution on data in good agreement with 
MC predictions, on par with Belle
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Signal involving charged tracks
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THE NEUTRALS IN THE ECL ARE VERY GOOD TOO
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Nice examples of signal involving photons
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Ready for the dark sector !

Single Photon Lines

e+e- → γ X 
e+e- → γ ALP (→γγ)
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Fig. 27: Combined projections (LDMX, Belle II) and constraints, encapsulating direct pro-

duction LDM constraints in the context of a kinetically mixed Dark Photon coupled to a

LDM state that scatters elastically (or nearly elastically) at beam–dump, missing energy,

and missing momentum experiments (Dark Photon mass mA0 = 3m� and coupling of the

Dark Photon to Dark Matter g� = 0.5 where applicable) [331–333]. The Belle II projection

for Phase 3 is extrapolated from the limit for Phase 2 (see Sec.2.2.1). Note that the relic den-

sity lines assume a standard cosmological history and that there is only a single component

of dark matter, which only interacts via Dark Photon exchange.

Alternatively, it may be possible to produce such a mediator o↵-shell, such that decays1700

into a pair of DM particles are allowed [291]. This process can for example be searched for in1701

radiative ⌥ decays, taking into account that the photon energy is now continuous rather than1702

having a bump: ⌥ (1S) ! � +M⇤
! � + inv. For a vector mediator one can instead study1703

the case that the ⌥ (1S) decays fully invisibly, such that the event is only visible due to the1704

pions from the decay of the heavier ⌥ resonance: ⌥ (3S) ! ⌥ (1S) + ⇡⇡ ! ⇡⇡ + inv [325].1705

These searches for non-resonant invisible decays may also allow to constrain mediators with1706

a mass above the centre-of-mass energy of the collider, provided the DM mass is small1707

enough [326, 327]. For CP-even scalar mediators, an analogous search can be performed1708

in the decays of scalar bottomium �b [328]. These searches can be used to constrain the1709

interactions of DM via heavy mediators in a model-independent e↵ective operator approach.1710

To conclude this discussion, we note that it is also conceivable that there is more than1711

one new mediator. For example, the mass for a vector mediator V could arise from a dark1712

Higgs bosonH 0 = (h0 + v0)/
p
v0 giving interactions such as (m2

V /v
0)h0V 2

µ and (mV /v0)2h02V 2
µ ,1713

while H 0 couples to the SM via the Higgs portal. In such a scenario the dark Higgs may be1714

produced via dark Higgsstrahlung from the vector mediator [312], which can lead to striking1715

signatures such as e+e� ! 3`+3`� [329, 330].1716
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PARTICLE IDENTIFICATION IN THE CDC
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Performance of CDC dE/dx particle identification with 
early calibrations in the hadronic event sample.

electrons
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PARTICLE IDENTIFICATION WITH THE TOP
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No kaons identified

One kaon identified in the 
TOP.

Both kaons identified in 
the TOP.

  f ® K - K +  inclusive

Another 
example of 
TOP particle 
identification 
with early 
calibration and 
alignment.

Inclusive sample
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B MESONS REDISCOVERED
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We have rediscovered the B meson !

.
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-1L dt = 472 pb∫

Figure 1: This figure shows the �E distribution of B candidates in 472 pb�1 of collision
data, in the mode B ! D(⇤)h, J/ K(⇤) where h = ⇡, ⇢. Events are required to contain at
least three good tracks to purify the sample with processes of the type e+e� ! hadrons,
while rejecting beam induced background, Bhabha scattering, and other low multiplicity
background sources. The charged kaon and pion tracks are required to have impact param-
eters, |d0| and |z0| less than 0.5 cm and 3.0 cm respectively. Particle identification criteria >
0.5 is applied to K. The K0

S , D
0, ⇢+, J/ and K⇤ candidates are selected within 0.489 <

M⇡+⇡� < 0.506 GeV/c2, 1.85 < MD < 1.89 GeV/c2, 0.675 < M⇡+⇡0 < 0.875 GeV/c2,
3.0 < Ml+l� < 3.12 GeV/c2 and 0.845 < MK⇡ < 0.942 GeV/c2, respectively. The D⇤+

candidates are required to have 0.143 < �M < 0.147 GeV/c2 and D⇤0 candidates are re-
quired to have 0.140 < �M < 0.144 GeV/c2. qq̄ background is suppressed with R2 < 0.3,
0.25 and 0.4 for B ! D⇡ and B ! J/ K(⇤), B ! D⇢ and B ! D⇤h modes, respectively.
The internal document reference is BELLE2-NOTE-PH-2018-004.
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L dt ∫ -1= 472 pb

Figure 2: This figure shows the Mbc distribution of B candidates in 472 pb�1 of collision
data, in the mode B ! D(⇤)h, J/ K(⇤) where h = ⇡, ⇢. Events are required to contain at
least three good tracks to purify the sample with processes of the type e+e� ! hadrons,
while rejecting beam induced background, Bhabha scattering, and other low multiplicity
background sources. The charged kaon and pion tracks are required to have impact param-
eters, |d0| and |z0| less than 0.5 cm and 3.0 cm respectively. Particle identification criteria >
0.5 is applied to K. The K0

S , D
0, ⇢+, J/ and K⇤ candidates are selected within 0.489 <

M⇡+⇡� < 0.506 GeV/c2, 1.85 < MD < 1.89 GeV/c2, 0.675 < M⇡+⇡0 < 0.875 GeV/c2,
3.0 < Ml+l� < 3.12 GeV/c2 and 0.845 < MK⇡ < 0.942 GeV/c2, respectively. The D⇤+

candidates are required to have 0.143 < �M < 0.147 GeV/c2 and D⇤0 candidates are re-
quired to have 0.140 < �M < 0.144 GeV/c2. qq̄ background is suppressed with R2 < 0.3,
0.25 and 0.4 for B ! D⇡ and B ! J/ K(⇤), B ! D⇢ and B ! D⇤h modes, respectively.
The internal document reference is BELLE2-NOTE-PH-2018-004.
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FULL FLEDGED VXD READY TO GO IN
The VXD are almost ready to go in: 

PXD (1 layer of DEPFET silicon pixel detector)  

SVD (4 layers of double sided silicon strip detector) 
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Pixel detector ready

 24

PXD mounted onto SuperKEKB beam pipe at KEK. The full 
VXD (PXD+SVD) should be completed within weeks.
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• Impact parameters: σd0 Belle II < 0.5 x σd0 Belle,  
Mass: σM Belle II ~ 0.7 x σM Belle

IP resolution

The VXD will be installed in Phase 3.
Restart Belle II data taking in February 2019.

SVD +x half-shell, Jan 2018

SVD -x half-shell, July 2018

PXD layer 1 ladders

First PXD half-shell 
being tested at DESY

Onwards to Phase 3 and the Physics Run

The VXD will be installed in Phase 3.
Restart Belle II data taking in February 2019.

SVD +x half-shell, Jan 2018

SVD -x half-shell, July 2018

PXD layer 1 ladders

First PXD half-shell 
being tested at DESY

Onwards to Phase 3 and the Physics Run

First Cosmic in the +x SVD 
clam shell at KEK, July 2018

Completed L4 (India)



Eugenio Paoloni ICPPA 2018

VXD STATUS
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Pixel detector ready

 24

PXD mounted onto SuperKEKB beam pipe at KEK. The full 
VXD (PXD+SVD) should be completed within weeks.
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• Impact parameters: σd0 Belle II < 0.5 x σd0 Belle,  
Mass: σM Belle II ~ 0.7 x σM Belle

IP resolution

Impact Parameter Resolution  
provided by the PXD

Machine learning: Hit Time Finding with a Neural Network R. Thalmeier, H. Yin

Figure 10: Signal deviations with different am-
plitudes

Figure 11: Signal deviations with different hit
times

APV25 clock. The distances between each peak show good agreement with the bunch spacing at
⇠ 16ns (figure 12). The preliminary result also shows good conformity with the offline software
analysis, which uses a center-of-gravity algorithm to determine the hit-time distribution (figure 13,
which is before time-calibration).
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Figure 12: Hit time distribution with particle sig-
nals

Figure 13: Hit time distribution using center-of-
gravity algorithm
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Time resolution provided by the SVD  
to reject the machine background

Raw reconstructed time of SVD clusters 
(N side) associated to tracks. 

Bunch spacing
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CONCLUSIONS

The detector collected 488 pb-1 

The collider luminosity exceeded 5 1033 Hz/cm2  

with relaxed ring optic and fairly small currents 

The detector behaved quite well providing good data since the 
start of the collisions 

The collaboration is on track to restart the operations in 
March 2019 with the full detector and an improved machine 

Lot of fun (and hard work) in front of us
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RUN TIME SHARE
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Operation of SuperKEKB 
(Phase 2) 

April ~ June 2018 
Luminosity Run 

Machine Tuning 
(RF aging, vacuum scrubbing,…) 

Beam Tuning Machine Study (e-cloud…) 

Troubles 
Maintenance 

others 
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BETA STAR Y HISTORY AND FUTURE 
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lower by* - crossing the “Talman barrier”

Super KEKB
Phase2

Courtesy Franck Zimmermann
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specific luminosity

Y. Ohnishi

SuperKEKB Phase 2


