

NRC Kurchatov Institute – "ITEP", Moscow, Russia

Ion production in the ¹²C + ⁷Be interactions at GeV energies

B.M. Abramov, Yu.A. Borodin, S.A. Bulychjov, I.A. Dukhovskoy, <u>A.P. Krutenkova</u>, V.V. Kulikov, M.A. Martemianov, M.A. Matsyuk, E.N. Turdakina

The 4th International Conference on Particle Physics and Astrophysics

MEPhI, Moscow, Russia, October 22-26, 2018

FRAGM detector was optimized to measure yields of nuclear fragments produced at ion—ion interactions and operated at accelerating—storage complex TWAC at ITEP (Moscow) until 2012

> Experimental setup permits us to detect ¹²C fragments (p, d, ³He, ⁶Li ...) with high kinetic energy at $T_0 = 0.2 - 3.0$ GeV/nucleon

► Report is based on the results obtained for reaction : ${}^{12}C + {}^{9}Be \rightarrow f + X$, where f – proton or nuclear fragment detected at small angle (~ 3.5⁰) at T₀ = 0.95 and 2.0 GeV/nucleon

> Measurement of the differential cross sections for fragments:

- ✓ allows to test of different models of ion—ion interactions covering both evaporation and cumulative regions
- ✓ gives a possibility to calculate physical parameters of nuclear structure used in the theoretical models, such as thermodynamical (thermal) and coalescence models
- Current study is also important as input to transport codes

Experiment FRAGM

✓ QDC (function of dE/dx and Z of fragment) (from CF1) vs TDC (TOF as a function of the atomic mass number of fragment between CF1 and C2)

Regions of different fragments are well separated

Measured fragment momentum spectra at 2 GeV

✓ Six fragments have been observed from proton to ⁷Be

- \checkmark Spectra cover from one to four orders of magnitude
- ✓ Data are normalized to BC model prediction for protons at fragmentation maximum (with total cross section $\sigma_{tot} = 859.78 \text{ mb}$)

Comparison : FRAGM data vs models at 2 GeV

➢ For p both INCL++ and BC give rather good description of the experimental data, for deuterons BC looks worse than INCL++

➤ The QMD model predicts much narrower fragmentation peaks for all fragments than observed in the experiment

Yields of fragments decrease with A grows and the accuracy of the prediction becomes worse

Only BC model has reasonable prediction of observed heavy fragments yields

RF kinetic energy spectra at 2.0 GeV/nucl.

NEW

> Kinetic energy spectra can be described by a sum of two exponents with slope parameters T_s (which describes fragmentation peak) and T_c (high momentum part)

> High momentum (cumulative) component is typical for light fragments

Slope T_C rises with increase of kinetic energy of incident nucleus

✓ **INCL++ predicts well energy dependence for** T_C for p and d.

 \checkmark T_C at 2 GeV is compatible with the result at 3.6 GeV/n for ¹²C¹²Cinteractions from Sov. J. Nucl. Phys. 43, 780 (1986)

Tc, MeV

✓ Fragment yields for the reaction ${}^{12}C + Be \rightarrow f + X$ were measured at ion incident energies $T_0 = 0.95$ and 2.0 GeV/nucleon with a magnetic spectrometer in the FRAGM experiment at accelerating-storage complex TWAC at ITEP (Moscow).

✓ Fragments from protons to carbon isotopes were identified by the correlation measurement TOF–ionization losses in scintillation detectors

✓ Fragment momentum spectra were measured/compared with predictions of four models; best description is obtained with the INCL++

✓ Kinetic energy spectra in the rest frame were also measured and parameterized with two slopes T_s and T_c ; the experimental T_c is found to rise with energy being in agreement with INCL++ predictions for protons and deuterons.

✓ Results at 0.95 GeV were published in Phys. Atomic Nuclei

TWAC – ITEP

TWAC – TeraWatt Accumulator Complex TWAC last parameters \checkmark Proton acceleration : 50 - 10000 MeV \checkmark Ion acceleration : up to 4 GeV/nucleon Ion accumulation : up to 700 MeV/nucleon ✓ Accelerating ions : up to ⁵⁶Fe \checkmark As a result of the strong fire accident in 2012, TWAC decommissioned. The was restoration / modernization of

plex is a priority task of ITEP

Beamline has several construction features (beam pipe break ~ 3 m, stubs etc.); all counters are positioned on the beam. So, detection efficiency depends on beam momentum

➢ MC for FRAGM is performed with GEANT4 code (version 4.9.4)

> Protons and light ions (²H, ³H, ³He, ⁴He) at 0.6 < P/Z < 6 GeV/c

Values of the magnet currents are adjusted for different momenta

➢ Program transports particles in the magneto − optical channel taking into account multiple scattering effects, ionization losses and absorption in the detector materials.

 \blacktriangleright It is essential to take the efficiency into account for P/Z < 2 GeV/c

- ✓ Binary Cascade (BC, GEANT4 toolkit, G. Folger *et al.*, EPJA 21 (2004) 407) :
 - ➢ Useable when either projectile or target is ¹²C or lighter
 - > Novel approach of the intra-nuclear cascade is implemented
- ✓ Quantum Molecular Dynamics (QMD, GEANT4 toolkit)
 - T. Koi et al., AIP Conf. Proc. 896 (2007) 21:
 - Available for light and heavy ions
 - All nucleons are considered as participants and are propagated by means a phenomenological nucleon-nucleon potential
- ✓ Liege Intranuclear Cascade (INCL++, J. Dudouet *et al.*, PR C89 (2014) 054616) :
 - > Model is implemented in the GEANT4 toolkit, projectiles lighter than A = 18
 - Combines best features of the BC and QMD models
- Los Alamos version of Quark Gluon String Model (LAQGSM03.03)
 LA-UR-11-01887, presented by S. Mashnik and K. Gudima
 - First stage is the internuclear time-dependent cascade developed initially at JINR
 - ➢ It was tested in a wide energy region till 1 TeV/nucleon and large number of ions

Relative fragment yields at 0.95 GeV/n

B.M. Abramov et al., Phys. At. Nucl. 81/3 (2018) 330

Fragment	FRAGM	BC	QMD	INCL++	LAQGSM	[16]
³ He/ ³ H	1.07(8)	1.05(1)	0.72(1)	0.89(1)	1.34(2)	1.08(8)
⁶ He/ ⁶ Li	0.08(1)	0.39(1)	0.26(1)	0.30(1)	0.17(1)	0.08(1)
⁷ Be/ ⁷ Li	0.75(6)	0.96(1)	0.49(3)	0.76(2)	1.48(6)	0.76(5)
⁸ B/ ⁸ Li	0.30(9)	0.015(1)	0.20(5)	0.0003(1)*	1.74(2)*	0.66(5)
¹⁰ Be/ ¹⁰ B	0.11(3)	0.80(3)	0.44(1)*	0.16(1)*	0.17(1)*	0.17(2)
$^{11}C/^{11}B$	1.0(4)	0.94(6)	0.97(1)*	0.99(1)*	0.97(1)*	0.88(8)

* Ratios obtained in model calculations upon integration with respect to all angles.

Add comments from the 0.95 GeV paper

Fragment separation in FRAGM

B.M. Abramov et al., Phys. At. Nucl. 81/3 (2018) 330

C – Be collisions at 0.95 GeV/nucleon

Regions of different fragments are well separated and can be clearly selected
 Increase of the projectile momentum leads to smaller cross section for light fragment production at 3.5⁰

Momentum spectra : $T_0 = 0.95$ GeV

B.M. Abramov et al., Phys. At. Nucl. 81/3 (2018) 330

- Momentum spectra cover 1-5 orders of magnitude
- 18 different fragments were measured

✓ Model INCL++ rather well reproduces the shape of fragmentation maxima at different T_0

✓ INCL++ predicts the cross section normalization better than all other models

Cross sections difference in models at 2 GeV

