Contents

- 1. Double beta decays
- 2. Background Considerations
- 3. (Scintillating) Crystal Bolometers
- 4. CUORE and CUPIDs
- 5. AMoRE
- 6. Summary

For CUORE and CUPID, I referred Stefano Pirro and Andrea Giuliani's presentation at NDM2018 CUORE collaboration, EPJC 77, 543 (2017)

Search for Neutrinoless double beta decay $(0\nu\beta\beta)$

- See-Saw model of the neutrino mass.
- Leptogenesis to account for the baryon asymmetry of the universe.

 $m_{v} \approx$

 m_{λ}

Neutrino mass from 0vββ experiment

- Half-lives of $0\nu\beta\beta$ inversely proportional to (effective neutrino mass)² by theory.
- To discover a sharp peak @ Q-value, we need a good energy resolution and extremely low background at that energy.

 10^{-4}

 10^{-4}

10⁻³

10⁻²

Lightest Neutrino Mass (eV)

 10^{-1}

for light neutrino exchange model.

Current best results for $0\nu\beta\beta$

Nucl.	Q (keV)	Abun. (%)	$\begin{array}{c} T_{1/2}^{2\nu} \\ (10^{20}\mathrm{Y}) \end{array}$	Exp	T _{1/2} (10 ²⁴ Y)	M (eV)	Ref.
⁴⁸ Ca	4270.0	0.187	0.44	CANDLES	> 0.058	<3.1-15.4	PRC 78 058501 (2008)
⁷⁶ Ge	2039.1	7.8	15	GERDA-II	>53	<0.15-0.33	Nature 544, 47 (2017)
⁸² Se	2997.9	9.2	0.92	CUPID-0	> 2.4	<0.38-0.77	PRL120, 232502 (2018)
¹⁰⁰ Mo	3034.4	9.6	0.07	NEMO-3	>1.1	<0.33-0.62	PRD89, 111101 (2014)
¹¹⁶ Cd	2813.4	7.6	0.29	AURORA	> 0.19	<1-1.8	nulc-ex/1601.05578.
¹³⁰ Te	2527.5	34.5	9.1	CUORE	> 15	<0.11-0.52	PRL120, 132501 (2018)
¹³⁶ Xe	2458.0	8.9	21	KamLAND -Zen	> 107	<0.06-0.16	PRL117, 082503 (2016)
¹⁵⁰ Nd	3371.4	5.6	0.08	NEMO-3	> 0.02	<1.6-5.3	PRD 94 072003 (2016)

Cryogenic experiments

Backgrounds are most critical !

If "zero" backgrounds in ROI(Region of Interests), the half-life limits are proportional to the detector mass and DAQ time. If finite backgrounds, sqrt (MT).

 $T_{1/2}^{0\nu} \propto MT$ (for zero backgronds)

$$T_{1/2}^{0\nu} \propto \sqrt{\frac{MT}{b\Delta E}}$$
 (for finite backgrounds)

Identify critical radioactivity

- Go through all known nuclei decaying β with Q > 3.02MeV in NNDC database.
- ^{110m}Ag(3010.5 keV) doesn't contribute for Mo experiment.
- Cosmogenic excitation is negligible after 1 year at underground.
- Only Thorium and Uranium natural radioactivity are critical for Q> 3.02MeV. → Great advantage to run high Q-value nuclei !

El	Decay	T _{1/2}	Q	Mother	Chain	Comment
			MeV	N/A		
^{26}Al	EC	$7.4 \mathrm{x} 10^5 \mathrm{y}$	4.004	N/A		Long lifetime
⁵⁶ Co	EC	0.21y	4.567	N/A		Short lifetime
⁸⁸ Y	EC	0.29y	3.623	⁸⁸ Zr (0.23 y)		Short lifetime
¹⁰⁶ Rh	B-	30s	4.004	106 Ru(1.02y)		
¹²⁶ Sb	B-	12.5d	3.670	126 Sn(2.3x10 ⁵ y)		Long lifetime
¹⁴⁶ Eu	EC	4.61d	3.878	¹⁴⁶ Gd (0.13 y)		Short lifetime
²⁰⁸ Tl	B-	3.05m	4.999	²²⁸ Th (1.91 y)	Th232	Main
²⁰⁹ Tl	В-	2.16m	3.970	²³³ U(159200y)	U233	2.1% branching
²¹⁰ Tl	В-	1.3m	5.482	²²⁶ Ra(1600y)	U238	0.02% branching
²¹⁴ Bi	B-	19.9m	3.269	²²⁶ Ra(1600y)	U238	Main

+ high energy gammas from (n,g) and muon induced high energy gammas

Principle of low temp detector

Bolometric approach : the source is embedded in a crystal, which is cooled down to 10-20 mK and works as a perfect calorimeter.

Advantages :

- High energy resolution (~5 keV FWHM)
- High efficiency $(\sim 70 90 \%)$
- Large flexibility in the isotope choice: ¹³⁰Te, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd

Alpha background rejection

Scintillating Bolometric approach : Both heat and scintillation are measured and alphas are separated.

HEAT SIGNAL

CUORE (Cryogenic Underground Observatory for RareEvents)

- Search for $\partial \nu \beta \beta$ of ¹³⁰Te and other rare events
- 988 TeO₂ crystals run as a bolometer array
 - 19 Towers, 13 floors
 - 4 modules per container
 - 741 kg total mass ; 206 kg ¹³⁰Te
 - 10^{27 130}Te nuclei
- 10 mK base temperature in a custom dilution refrigerator
- Gran Sasso underground lab (LNGS), Italy

– NTD – Absorber –Weak Thermal coupling

CUORE Backgrounds

- Significant reduction in the gamma region with respect to CUORE-0(earlier version)
- ²¹⁰Po excess appears to be from shallow contamination in copper around the detectors.

Background Index of CUORE

For CUORE, by far the most dominant backgrounds are

- 1. CuNOSV copper holder
- 2. TeO2 crystal
- 3. SI & Rods & Muons

~10⁻² ~10⁻³ } Surface > Bulk ~10⁻⁴

counts/keV/kg/y

TeO₂: natural radioactivity CuNOSV: natural radioactivity CuNOSV: cosmogenic activation TeO₂: cosmogenic activation CuOFE: natural radioactivity RomanPb: natural radioactivity ModernPb: natural radioactivity 90%CL limit SI: natural radioactivity ----Value Rods and 300KFlan: natural radioactivity Environmental µ ----Environmental n Environmental y 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01

CUPID

CUORE Upgrade with Particle IDentification

R&D towards CUPID: <u>arXiv:1504.03612</u> CUPID : <u>arXiv:1504.03599</u>

It is clear from CUORE that we need alpha background rejection.

Astroparticle Physics 35 (2012) 558–562

13

CUPID-0 : ZnSe crystals (Lucifer)

CUPID-0 represent the first enriched bolometer $\beta\beta$ -experiment that is demonstrating the background rejection achievable for hybrid $\beta\beta$ scintillating bolometers

Cuoricino/CUORE-0 cryostat

<u>ββ-0v Results</u>

Background Level: 3.6x10-3 ckky

 $T_{1/2}(^{82}Se \rightarrow ^{82}Kr) > 2.4x10^{24} y (90\% C.I.). \rightarrow 4.0x10^{24} y (2018)$

This results overcomes by 1 order of magnitude the results of Nemo recently republished (https://arxiv.org/abs/1806.05553)

CUPID-Mo (LUMINEU)

16-bit or 14-bit ADC

Trigger and/or Stream data

EDELWEISS-III cryogenic facility at LSM (France)

Laboratoire Souterrain de Modane IT AL Y 1.7 km rock overburden (~4.8 km w.e.) 5 μ/day/m²; 10⁻⁶ n/day/cm² (>1 MeV) 4800 mwe Deradonized air flow (\sim 30 mBg/m³) 1228 m 1263 m Ititudes 6210 m Distances EDELWEISS set-up muon veto Clean room (ISO Class 4) ³He/⁴He inverted wet cryostat polyethylene Passive shield Modern lead (18 cm) Roman lead (2 cm; 14 cm at 1 K plate) Cu Polyethylene (external ~ 50+5 cm and 10 cm at 1 K plate) Pb ' **Background monitors** Muon veto (98.5% covering) Neutron counter Radon counter Electronics, DAQ (Samba) Low noise cold electronics AC bias, modulation (100 kHz) \rightarrow demodulation (up to 1 kHz)

PLB 702 (2011) 329; JINST 12 (2017) P08010; EPJC 77 (2017) 785

12 868 m

neutron

counter

Tests of Li₂¹⁰⁰MoO₄ scintillating bolometers

200

05/2016, 12 mK

LUMINEU: search for 2β decay of ¹⁰⁰Mo

CUPID-Mo

<u>19</u>

CUPID-Mo Phase I (20 crystals):

- 20 ¹⁰⁰Mo-enriched (97%) Li2MoO4
 (Ø44X45 mm, 0.21 kg each; 4.18 kg total)
 → 2.5 kg of 100Mo
- 20 Ge light detectors (Ø 44X0.175 mm)+SiO
- EDELWEISS set-up @ LSM (France)

START DATA TAKING: in the next weeks

CUPID-Mo Phase II (20+26 crystals):

- Additional **26 cubic Li2100MoO4** (45x45x45 mm, 0.28 g each)
- \rightarrow 5 kg of 100Mo
- CUPID-0 set-up @ LNGS (Italy)
 PLANNED START DATA TAKING: June 2019

Overview of AMoRE Project

Detector schematics of AMoRE

- Use Mo containing Scintillating Bolometer : (⁴⁰Ca,X)¹⁰⁰MoO₄ + MMC
- For Each crystal, phonon and photon sensors made of MMCs, SQUIDs to separate alphas (background) and betas. -- Fully covered by Yong-Hamb's presentation.

Plan of AMoRE Project

- 100 kg ¹⁰⁰Mo double beta decay experiment, largest experiment Q> 2614 keV
- One of two ¹⁰⁰Mo DBD projects.

22

⁴⁰Ca¹⁰⁰MoO₄

~ 1.9 kg

AMoRE Pilot

(⁴⁰Ca,X)¹⁰⁰MoO₄ ~ 6 kg AMoRE-I

X = Li, Na, Pb...

AMoRE-I AMoRE-II Pilot Crystal Mass (kg) 1.9 200 6 <10-2 <10-3 <10-4 Background Goal(ckky) 1.0×10^{24} 8.2×10^{24} 8.2×10^{26} $T_{1/2}(year)$ m_{bb} (meV) 380-719 130-250 13-25 Schedule 2015-2018 2018-2020 2021-2025

AMoRE Collaboration

• Total 105 members from 23 institutes at 8 countries.

Korea	CUP, Institute of Basic Science (CUP)		
	Kyungpook National University (KNU)	11	Simulation, Crystal Tests
	Soongsil University (SSU)	3	Theory
	Seoul National University (SNU)	4	Low Temp., Data Analysis
	Ehwa Womans University (EWU)	3	HPGe
	Semyung University (SMU)	1	
	KRISS	3	DR, Cryostat
	Sejong University (SJU)	3	Data Analysis, Muon
	Chung-Ang University (CAU)	3	Theory
Russia	JSC FOMOS-Materials (FOMOS)	2	CMO crystals
	Baksan Neutrino Observatory of INR RAS (BNO)	8	HPGe, Simulation
	National Research Nuclear University (NRNU)	1	Backgrounds, Crystals
	Nikolaev Institute of Inorganic Chemistry (NIIC)	3	Enriched Crystal
Germany	Physikalisch-Technische Bundesanstalt (PTB)	2	SQUID
	Kirchhoff-Institute for Physics (KIP)	3	MMC, Photon Detector
Ukraine	Institute for Nuclear Research (INR)	7	Simulation, Background
China	Tsinghua University (THU)	3	
Thailand	Nakhon Pathom Rajabhat University (NPRU)	6	
Indonesia	Institut Teknologi Bandung (ITB)	2	Muon Veto
	University of Mataram (UM)	1	
Pakistan	Abdul Wali Khan University (AWKUM)	1	
	Kohat University of Science and Technology (KUST)	2	

AMoRE-Pilot Setup

• 6 crystals making total mass 1.89 kg.

• Two vibration reduction systems are installed.

Preliminary results

25

- Both photon/phonon ratio and rise time used to remove alpha background.
- Internal radioactivity is measured by alphas.

Comparison of Data with MC simulation

Background reduction in AMoRE-Pilot Exp.

- 27
 - Connectors, glue, and PCB boards were found highly radioactive and are removed for next runs in Pilot setup.

Also installed neutron shielding inside and outside of Pb shielding with Borated PE, PE blocks, and Boric Acids.

Preliminary Results

- Black (Red) : Before (After) replacing high activity materials.
- Currently we are getting data after installing neutron shielding.

28

Decision on crystals for AMoRE-II

- 29
- CMO (CaMoO₄) is a very good crystal with the largest light output, but CMO has a disadvantage that we need ⁴⁸Ca depleted isotopes, expensive.
- LUMINEU group decided to use LMO (Li₂MoO₄), and we are working on LMO, PMO (PbMoO₄), & NMO (Na₂Mo₂O₇), crystals.

Course 4 a l	Emission	LightYi	eld(10K)	Decay time	J	Mo
Crystal	(nm)	280nm	X-ray	(µs)	density	Fraction
CMO(Ukra)	540	100	100	240	4.34	0.49
ZMO(NIIC)	614	63	35		4.37	0.436
LMO(KTI)	535	1	5	23	3.03	0.562
PMO(NIIC)	592	11	105	20	6.95	0.269
NMO(NIIC)	663	75	9	750	3.62	0.558

CMO (CaMoO₄) LMO (Li₂MoO₄) NMO (Na₂Mo₂O₇) PMO (PbMoO₄)

Publications :

Pandey et al., IEEE Trans. Nucl. Sci. (2018) Pandey et al., Journal of Crystal Growth 480 (2017) 62-66 J.Y. Lee et al., IEEE Trans. Nucl. Sci. (2018)

CUP and NIIC grow enriched molybdate crystals at CUP.

- Crystal group has been successful in growing molybdate crystals. Growing time ~ 1 week.
- The purity of the grown crystals are measured by ICP-MS \rightarrow Promising results
- We have a campaign to grow an enriched LMO crystal in this summer at NIIC and CUP.

Unpurified Mo and Ca powders

30

CZ01_1603

CZ01 1501

CZ01_1604 annealing

Purified Mo and Li powders

CZ02-L1601

(cracked)

CZ02-L1702

CZ02-L1705

(Sublimed MoO₃)

CZ02-L1602

CZ02-L1701

CZ02-L1704 (Sublimed MoO₃)

CZ02-L1707 (Sublimed MoO₃)

CZ02-L1706

(Sublimed MoO₃)

CZ02-L1703

(Sublimed MoO₃)

CZ02-L1801 (Double crystallization)

Purified Mo and Na powder

Weight : 255.6 g. Height : 100 mr

After cut and pol

CZ01 1602

CZ01_1604

Impurity summary of molybdate crystals

- Low temperature crystal tests are critical and under preparation.
- We have a good progress toward AMoRE-II crystals.

31

Enriched LMO crystals will be grown at CUP and NIIC (Russia) in this summer.

Final decision of crystal will depend on background and particle identification power.

Schedule

					201	8						201	19									20)20									2	02	1			
ltem	Description		Q2		Q3	_	Q4	—	Q1		Q2			Q3		Q4			21		Q			Q3		Q			Q1			22		Q3			Q4
	Qti'a	4	5 6	ŀ	7 8	9	10 11 12	1	2 3	3 4	5	6	7	8 9	9 1	10 11	12	1	2	3	4 5	6	7	8	9	10 1	1 12	2 1	2	3	4	5 (5	7 8	9	10	11 12
IBS HQ	Operation Maying																																				
	Moving Menriding Cage	K						F		+		+	-		+	_	_		-	+	_	-	\vdash		+	-	+	+		_	_	-	+				—
	ARF Design	Ľ								_			-			_			_	-		-	-		-		-						-	_			
	Construction	T														_						-												_			
	U-labs			ſ	-												->	•																			
	Operation			T											T																						
	COSINE-100 Run			Ļ										-																							
COSINE	Crystal Growing													-																							
	COSINE-200 Run																																				\rightarrow
	DR Manufacture			þ	-							+			t	\rightarrow																					
	DR install															(Ť																	
	Cyostat Design				-				-																												
	Cryostat Manu & Inst.																			Ť																	
	Shielding NFAC									•																											
	Shielding Manu & Inst.																	•						-	•												
	Crystal Growing																																				
	Install & Run																																				-
NEOS-II	Install & Run					•											_			-					-		+										

32

IBS is building a new underground lab.

33

Laddet: 1,015m

AMORE ... 1.029.6m

- Will have an independent entrance (human vertical elevator) from mine activity.
- The construction starts this year and completed early of 2020.

Bird view of Handuk Iron Mine

Handuk mine, ~ 0.7milion tons iron ore a year

Center for

Comparison of cryogenic experiments

34

Exp	Q (keV)	ΔE (keV)	Background ROI (ckky)	Comment (Mass of isotope)
CUORE (¹³⁰ Te)	2527.5	~5	0.01	Copper holder surface
CUPID-0 (⁸² Se)	2997.9	~23	0.0032	muons, neutron capture(?)
CUPID-Mo (¹⁰⁰ Mo)	3034.4	~6	0.06	Active components 5kg (2019)
AMoRE (¹⁰⁰ Mo)	3034.4	~15	~0.5	Neutron capture, improving 35 kg (2021) 100kg(2023)

Summary

- Cryogenic double beta decay experiments demonstrates the competence.
- Backgrounds can be reduced to confirm "zero background" reaching down to 10 meV scale.
- CUPIDs experiments are in progress towards next phases.
- AMoRE-Pilot & AMoRE-I is making progress in detector performance and reducing backgrounds.
- AMoRE-II will begin in 2021 at a new underground laboratory.