

Physics at LHCb

Pavel Krokovny on behalf of the LHCb Collaboration

Budker INP & Novosibirsk University

MEPhI, Moscow

Outline:

- LHCb detector & data taking
- Lepton flavour universality & CP violation
- Rare decays
- Spectroscopy
- Soft QCD
- LHCb upgrade
- Summary

22-26 October

LHCb performance

- Momentum resolution: 0.4 0.6% at 5 100 GeV
- Muon ID efficiency: 97 % with 1-3 % $\pi \,{\rightarrow}\,\mu$ mis-ID probability
- Electron ID efficiency: 90% with 4% h \rightarrow e mis-ID probability
- Kaon ID efficiency: 95% with 5 % π \rightarrow K mis-ID probability

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Acceptance: $2 < \eta < 5$

1) Commun. 208 35 -42 2) Int. J. Mod. Phys. A 30 (2015) 153022

10 fb⁻¹ delivered!

LFV results

Please see dedicated talk

LHC

CPV results

Rare decays

Evidence for
$$B_s^0 \rightarrow K^{*0}\mu^+\mu^-$$

$$\mathcal{B}(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-) = (2.9 \pm 1.0 \pm 0.2 \pm 0.3(\text{norm})) \times 10^{-8}$$

- > Proceed by $b \rightarrow d$ FCNC
- > SM expectation $B(B_s^0 \rightarrow K^{*0}\mu^+\mu^-) \sim 10^{-8}$
- Sensitive to physics beyond the SM
- > Complementary to $b \rightarrow s$ FCNC studies

$$\mathcal{B}(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-) = \mathcal{B}(\overline{B}^0 \to J/\psi \overline{K}^{*0}) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \\ \times \frac{f_d}{f_s} \frac{N(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-)}{\varepsilon(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-)} \frac{\varepsilon(\overline{B}^0 \to J/\psi \overline{K}^{*0})}{N(\overline{B}^0 \to J/\psi \overline{K}^{*0})}$$

- > Simultaneous unbinned ML fit to the m(K⁻ $\pi^+\mu^+\mu^-$) in eight bins [4 NN bins] x [Run 1 : Run2]
- > Signal yield is 38 ± 12 (3.4 σ significance) q² ∈ [0.1 : 19] GeV²/c⁴ excluding J/ ψ and ψ (2S)

$$\frac{\mathcal{B}(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-)}{\mathcal{B}(B_s^0 \to J/\psi \overline{K}^{*0}) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)} = (1.4 \pm 0.4 \pm 0.1 \pm 0.1) \times 10^{-2}$$

JHEP 07 (2018) 020

- > SM expectations [PRL 112 (2014) 101801]: $\mathcal{B}(B_s^0 \to \mu^+\mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+\mu^-) = (1.06 \pm 0.09) \times 10^{-10}$
- > Very sensitive to physics beyond the SM
- Only heavy B_s⁰ decays to μ⁺μ⁻ in SM.
 Measurement of decay time can disentangle contributions from the two states.
- > The results:

 $\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \\ \tau(B^0_s \to \mu^+ \mu^-) &= 2.04 \pm 0.44 \pm 0.05 \text{ ps} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 3.4 \times 10^{-10} @ 95\% \text{ C. L.} \end{aligned}$

World average (HFLAV): $\tau(B_{s}^{0}) = 1.510 \pm 0.005 \text{ ps}$

Observation of $D^0 \to h^+ h^- \ \mu^+ \mu^-$

Normalization BF $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) = (9.64 \pm 0.48 \pm 0.51 \pm 0.97) \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) = (1.54 \pm 0.27 \pm 0.09 \pm 0.16) \times 10^{-7}$

- Rarest charm decay ever observed
- > Short distance FCNC $c \rightarrow u\mu^+\mu^-$ gives B ~ 10⁻⁹
- Search for CP violation and angular asymmetry: [arXiv 1806.10793] → not significant, need more statistics

PRL 119 (2017) 181805

Dataset: 2.0 fb⁻¹ @ √s=8 TeV

Search for $B^+ \rightarrow D_s^+ \phi$

> Normalize to $B^+ \rightarrow D_s^+ D^0[K^+K^-]$

Search for $B^+ \rightarrow D_S^{++} \phi$

 $N(B^+ \to D_s^+ \phi) = 5.3 \pm 6.7$

$$\mathcal{B}(B^+ \to D_s^+ \phi) < 4.9 \times 10^{-7}$$

JHEP 01 (2018) 131

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV 1.8 fb⁻¹ @ √s=13TeV

12

First evidence for $\Sigma^{\scriptscriptstyle +} \to p \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

- \rightarrow FCNC s \rightarrow dll transition
- BR in SM: (1.6-9.0) 10⁻⁸ [He,Tandean, Valencia, PRD 05] dominated by long distance contributions

2.0 fb⁻¹ @ √s=8 TeV

First evidence for $\Lambda_c^+ \rightarrow p \ \omega[\mu^+\mu^-]$

- FCNC c→ull transition
- $\,\,{}^{\scriptscriptstyle >}\,$ Short distance BR in SM $\,\,{\sim}10^{\text{-9}}$, long distance (via V $\rightarrow\,\,\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -})$ BR up to $10^{\text{-6}}$

 $B(\Lambda_{c}^{+} \rightarrow p\mu^{+}\mu^{-}) < 7.7 \ 10^{-8} \text{ at } 90\% \text{ CL}$

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV **14**

PRD 97 (2018) 091101

Spectroscopy

$$\chi_{c1,2} \rightarrow J/\psi \ \mu^+\mu^-$$

PRL 119 (2017) 221801

- > Follows observation of $\chi_{c1,2} \rightarrow J/\psi \ \mu^+\mu^$ at BESIII [PRL 118 (2017) 101802]
- > Clear 4μ signature
- > Probes low $p_T \chi_{c1,2}$

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV 1.9 fb⁻¹ @ √s=13TeV

$$\begin{split} \mathsf{M}(\chi_{c1}) &= 3510.71 \pm 0.04 \pm 0.09 \text{ MeV/c}^2 \\ \mathsf{M}(\chi_{c2}) &= 3556.10 \pm 0.06 \pm 0.11 \text{ MeV/c}^2 \\ \mathsf{M}(\chi_{c2}) &= \mathsf{M}(\chi_{c1}) = 45.39 \pm 0.07 \pm 0.3 \text{ MeV/c}^2 \\ \mathsf{\Gamma}(\chi_{c2}) &= 2.10 \pm 0.20 \pm 0.02 \text{ MeV} \\ \end{split}$$

Observation of five narrow Ω_c^{0} states PRL 118 (2017) 182001

- > Ω_{c}^{0} family corresponds to css quark content
- > Two ground states were known: $\Omega_c^0 J^P = 1^+$ and $\Omega_c^0 (2770) J^P = 3/2^+$ [PLB 672 (2009) 1]
- > Study spectrum of $[\Xi_c^+ \rightarrow pK^-\pi^+]K^+$
- > Spin-parity analysis is in progress

$\Omega_c^{\ 0}$ states properties

Resonance	Mass (MeV)	Γ (MeV)	Yield	N _σ
$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$	$1300\pm100\pm80$	20.4
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1 \pm 0.1 \pm 0.1 \pm 0.0$	$0.8\pm0.2\pm0.1$	$970\pm60\pm20$	20.4
	-0.5	<1.2 MeV, 95% C.L.		
$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5\pm0.4\pm0.2$	$1740\pm100\pm50$	23.9
$\Omega_{c}(3090)^{0}$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7\pm1.0\pm0.8$	$2000\pm140\pm130$	21.1
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1\pm0.8\pm0.4$	$480\pm70\pm30$	10.4
	-0.5	<2.6 MeV, 95% C.L.		
$\Omega_{c}(3188)^{0}$	$3188 \pm 5 \pm 13$	$60\pm15\pm11$	$1670\pm450\pm360$	
$\Omega_{c}(3066)_{fd}^{0}$			$700\pm40\pm140$	
$\Omega_{c}(3090)_{fd}^{0}$			$220\pm60\pm90$	
$\Omega_c(3119)^0_{\rm fd}$			$190\pm70\pm20$	

Four states have been confirmed by Belle [PRD 97 (2018) 051102]

PRL 118 (2017) 182001

Measurement of Ξ_{cc}^{++} lifetime

 Ξ_{cc}^{++}

- > Decay time relative to $\Lambda_{\rm b}^{0}[\Lambda_{\rm c}^{+}\pi^{-}\pi^{+}\pi^{-}]$
- Decay time resolution is 63 (32) ps for Ξ_{cc}^{++} (Λ_{b}^{0}) ۶

First observation of decay
$$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{-}$$

$$\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \times \mathcal{B}(\Xi_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)} = 0.035 \pm 0.009 \,(\text{stat}) \pm 0.003 \,(\text{syst})$$

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV 1.7 fb⁻¹ @ √s=13TeV

PRL 121 (2018) 162002 21

Observation of Ξ_{b}^{-}

Hadronic channel $\Xi_{b}(6227)^{-} \rightarrow [\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}]K^{-}$

 $\Gamma[\Xi_{h}(6227)^{-}] = 18.1 \pm 5.4 \pm 1.8 \text{ MeV}$

 $M[\Xi_{b}(6227)^{-}] = 6226.9 \pm 2.0 \pm 0.3 \pm 0.2 \text{ MeV/c}^{2}$

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV 1.5 fb⁻¹ @ √s=13TeV

 PRL 121 (2018) 072002
 22

Observation of $\Xi_{\rm b}^{-}$

Semileptonic channels: $\Xi_{b}(6227)^{-} \rightarrow [\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-}X]K^{-}$ and $[\Xi_{b} \rightarrow \Xi_{c}^{+}\mu^{-}X]\pi^{-}$

Larger samples (about 25 σ significance) but with missing mass. Relative production rates are reported. Consistent with strong decay of radially or orbitally excited state (1P $\Xi_{\rm h}$).

Measurement of Ω_c^{0} lifetime

Dataset:

1.0 fb⁻¹ @ √s=7 TeV

2.0 fb⁻¹ @ √s=8 TeV

- > Useful for testing higher order effects in heavy quark expansion (HQE)
- > Using $\Omega_c^0 \rightarrow pK^-\pi^+\pi^-$ decays obtained from $\Omega_b^- \rightarrow \Omega_c^0 \mu^-\overline{\nu}X$
- $^{\succ}$ B⁺ \rightarrow D⁺ $\mu^{-}\overline{\nu}X$ decays used as a normalization channel

2200

1800

1600

1400

1200

1000

800

600

400

200

0

n

S 2000 2000 1800

ন্দ্র

Candidates

Study $\Lambda_{h}^{0}\pi^{\pm}$ system

0

Ω

200

Q [MeV]

50

- > Study of the $\Lambda_{h}^{0}\pi^{\pm}$ system using $\Lambda_{h}^{0}[\rightarrow \Lambda_{c}^{+}\pi^{-}]$ baryons combined with a prompt pion with $p_{\tau}(\pi) > 200 \text{ MeV/c}$
- > $Q = m(\Lambda_{h}^{0}\pi^{\pm}) m(\Lambda_{h}^{0}) m(\pi^{\pm}) < 200 \text{ MeV/c}^{2}$
- Measurement of Σ^{\pm} and Σ^{\pm} baryon ۶ properties with ~5 times improved precision in comparison with CDF results

100

LHCb

(a) $\Lambda_{h}^{0}\pi^{-}$

 $\Sigma_b^- \rightarrow \Lambda_b^0 \pi^-$

 $\Sigma_{b}^{*-} \rightarrow \Lambda_{b}^{0} \pi^{-}$

Background

150

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV

50

100

150

200

Q [MeV]

Observation of two new resonances in $\Lambda_b^{0}\pi^{\pm}$

- > Extend study to region with Q < 600 MeV/ c^2
- > $p_{\tau}(\pi)$ > 1000 MeV/c used to suppress combinatorial background
- $^{\scriptscriptstyle >}$ Peaks with local significance more than 12 σ have been observed

Soft QCD

Inelastic pp cross-section at 13 TeV

A fiducial cross section $\sigma_{_{\text{acc}}}$

- inel [mb] At least one prompt, long-lived charged particle with p > 2 GeV/c
- Unbiased triggers: random events
- Leading bunches in LHC bunch-trains to avoid background from previous crossing

 $\sigma_{acc} = \frac{(\mu - \mu_{\rm bkg})N_{\rm evt}}{c}$

- $\mu = -\ln(p_0)$ is the average number of interactions in event
- p_0 is the fraction of empty events
- μ_{bkg}/μ < 1%
- Correction to detector inefficiency and wrongly reconstructed tracks

 $\sigma_{\rm acc} = 62.2 \pm 0.2 (\text{syst}) \pm 2.5 (\text{lumi}) \text{ mb } @ 13 \text{ TeV}$

> The full phase-space extrapolation (Pythia) *Non-diffractive *Single-diffractive *Double-diffractive . $\sigma_{\text{inel}} = 75.4 \pm 3.0(\text{expt}) \pm 4.5(\text{extrap}) \text{ mb } @ 13 \text{ TeV}$

J/ψ production in jets

Kinematic bb correlations

JHEP 11 (2017) 030

bb correlations probe production mechanism Inclusive reconstruction using $b \rightarrow J/\psi X$ decays Two J/ ψ candidates:

- 2 < p_T < 25 GeV/c
- 2 < η < 4.5
- Displaced vertices from same PV
 Differential cross section

Kinematic $b\overline{b}$ correlations

JHEP 11 (2017) 030 0.25 $rac{1}{\sigma}rac{\mathrm{d}\sigma}{\mathrm{d}m^{\mathrm{J}/\psi}\,\mathrm{J}/\psi}$ $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}A_{\mathrm{T}}}$ 4.5 LHCb \mathbf{c} d 0.2 $\sqrt{s} = 7,8 \,\mathrm{TeV}$ 3.5 $p_{\rm T}^{\rm J\!/\psi}\,>2\,{\rm GeV\!/}c$ 0.15 2.5 2 1.5 0.1 0.05 0.5 -0 0.2 10 0.4 0.8 15 0 0.6 20 $m^{J/\psi J/\psi}$ $\left[\text{GeV}/c^2 \right]$ \mathcal{A}_{T} 0.2 $rac{1}{\sigma}rac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{J/\psi}\,J/\psi}$ $rac{1}{\sigma}rac{\mathrm{d}\sigma}{\mathrm{d}y^{\mathrm{J}/\psi\,\mathrm{J}/\psi}}$ 0.9 0.18 f) 0.16 0.7 0.6 0.5 0.4 0.3 0.14 0.12 0.1 0.08 0.06 0.04 0.1 0.02 0 2 0 Dataset: 5 10 20 2.5 3 3.5 4.5 0 15 4 $p_{\rm T}^{\rm J/\psi\,J/\psi}$ 1.0 fb⁻¹ @ √s=7 TeV $y^{J/\psi J/\psi}$ [GeV/c]2.0 fb⁻¹ @ √s=8 TeV

LHCb upgrade

LHCb upgrade

© F.Alessio

LHCb upgrade

Velo module

UT sensor

UT staves constructions

RICH MAMPT under test

Calorimter electornics

SciFi Module

Test of muon electronics

LHCb upgrade II

Major detector upgrade in LS4 (2030)

- Expression of Interest [CERN-LHCC-2017-003]
- Aim to run at 10 x Upgrade I luminosity and collect 300 fb⁻¹
- Challenging conditions for flavour physics (number of visible interactions ~50)
- Physics case document: CERN-LHCC-2018-027
- LHCb may be the only large-scale flavour physics experiment to run in HL-LHC era

Conclusion

- LHCb operating well in the final few months of data-taking in Run 2
- New and more complex analyses constantly being added to physics program.
- Less than half on Run 2 statistics is used in presented results. We expect significant improvement after processing all collected data.
- Preparation for LHCb Upgrade I proceeding well.
- Most of key measurement will be still limited by statistics before HL-LHC era (Upgrade II ~2030?)

Backup

R_{D^*} in muonic channels

- τ reconstructed by $\tau^- \rightarrow \mu^- \nu_{\tau} \overline{\nu}_{\mu}$
- Both channels have the same final state ($K\pi\pi\mu$)
- Separation using difference in kinematics:
 - $\succ E^*_{\ \mu}, E_{\mu} \text{ in } \overline{B}{}^0 \text{ rest frame}$

>
$$M_{miss}^2 = (p_{B0} - p_{D^*} - p_{\mu})^2$$

>
$$q^2 = (p_{B0} - p_{D^*})^2$$

Approximate p_{B0} using
 B⁰ flight direction

$$(p_{B0})_{z} = m_{B}/m_{reco} (p_{reco})_{z}$$

R_{D^*} in muonic channels

- Yields are extracted with a 3D binned ML fit in E_m^* , m_{miss}^2 , q^2
- Templates for the signal, normalization and backgrounds are obtained on MC and checked against control samples

- $R_{D*} = 0.336 \pm 0.027$ (stat) ± 0.030 (syst) 2σ above SM
- Main background: Partially reconstructed and mis-ID decays
- Main systematic: Size of the simulated sample

Phys. Rev. Lett. 115, 111803 (2015)

R_{D^*} in hadronic τ decays

 τ reconstructed by $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ independent from R_{D^*} muonic

- Partial cancellation of experimental systematic uncertainties
- Main background:
 - $B^0 \rightarrow D^* \pi \pi \pi X$, suppressed with τ decay time, t_{τ}
 - B \rightarrow DD_(s)X, suppressed with BDT

$R_{_{D^{\ast}}}$ in hadronic τ decays

• Yields are extracted by a binned ML fit on q^2 , BDT and t_{τ}

- $R_{D^*} = 0.291 \pm 0.019 \text{ (stat)} \pm 0.026 \text{ (syst)} \pm 0.013 \text{ (ext)}$ 1 σ above SM Phys. Rev. Lett. 120, 181802 (2018)
- Main systematic: Size of the simulated sample
- LHCb average: $R_{D^*} = 0.310 \pm 0.016$ (stat) ± 0.022 (syst) 2.2 σ above SM

- Measurements of R_{D} and R_{D*} are consistent with each other
- Combined result is 3.8σ above SM prediction
- Tension is slightly reduced in a recent SM update [JHEP 11 (2017) 061]

SM prediction of $R_{_{J\!/\!\psi}}$

h

Test of LFU in $b \rightarrow c\ell v$ decays with a different spectator quark using large B⁺_c sample available at LHCb

$$R_{J/\psi} \equiv \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} \stackrel{\text{SM}}{\in} [0.25, 0.28]$$

Interval is due to form factor uncertainty [PLB 452 (1999) 129] [arXiv:hep-ph/0211021] [PRD 73 (2006) 054024] [PRD 74 (2006) 074008]

Lattice calculation is in progress

 \overline{c}

 $R_{J/\psi}$ results

τ reconstructed by $\tau^- \rightarrow \mu^- \nu_{\tau} \overline{\nu}_{\mu}$ Analysis strategy as in $R_{D^*} + t_{\tau}$ as 4th discriminating variable

LFU tests in $b \rightarrow s\ell\ell$

Use double ratio to reduce systematic effects:

$$R_H \equiv \frac{\mathcal{B}(B \to H \,\mu^+ \mu^-)}{\mathcal{B}(B \to H \,(J/\psi \to \mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B \to H \,(J/\psi \to e^+ e^-))}{\mathcal{B}(B \to H \,e^+ e^-)}$$

Measurement of R_{κ^*}

LHC

- Most precise measurement to date
- Compatible with BaBar and Belle
- Statistically limited by the electron sample
- BIP [EPJC 76 (2016) 440] CDHMV [JHEP 04 (2017) 016] EOS [PRD 95 (2017) 035029] flav.io [EPJC 77 (2017) 377] JC [PRD 93 (2016) 014028] BaBar [PRD 86 (2012) 032012]
- Belle [PRL 103 (2009) 171801]

$R_{\kappa(*)}$ combination

- Combination of $R_{_{K^*}}$, $R_{_K}$ and [PRL 118 (2017) 111801] is ${\sim}4\sigma$ from SM
- $b \rightarrow s\mu^{+}\mu^{-}$ BR and angular obs. are in agreement with LFU tests
- Considered together the tension with SM further increases

Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$

NP models which explain the observed discrepancies in the measurement of R(K(*)) w.r.t SM predictions, foresee anomalous behaviors also in the angular distribution of the decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$

Decay amplitude can be described using q^2 and three angles: θ_1 , θ_K , ϕ :

Decay amplitude of $B^0 \to K^{*0} \mu^+ \mu^-$

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{d\bar{\Omega}dq^2} = \frac{9}{32\pi} [\frac{3}{4}(1-F_L)\sin^2\theta_k + F_L\cos^2\theta_k + \frac{1}{4}(1-F_L)\sin^2\theta_k\cos2\theta_\ell - F_L\cos^2\theta_k\cos2\theta_\ell + \frac{1}{4}(1-F_L)\sin^2\theta_k\cos2\theta_\ell - F_L\cos^2\theta_k\cos2\theta_\ell + S_3\sin^2\theta_k\sin^2\theta_\ell\cos2\phi + \frac{1}{4}A_{FB}\sin2\theta_k\sin2\theta_\ell\cos\phi + \frac{1}{5}\sin2\theta_k\sin2\theta_\ell\cos\phi + \frac{4}{3}A_{FB}\sin^2\theta_k\cos\theta_\ell + S_7\sin2\theta_k\sin\theta_\ell\sin\phi + S_8\sin2\theta_k\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_k\sin^2\theta_\ell\sin2\phi],$$

51

The P_5 ' anomaly

Angular observable:

$$P_5' \equiv S_5 / \sqrt{F_L (1 - F_L)}$$

How to measure γ

Two amplitudes $b \rightarrow cW(us) [B^- \rightarrow D^0K^-]$ and $b \rightarrow uW(cs) [B^- \rightarrow D^0K^-]$ give same final state when both D and D decay to a common final state. No penguin contribution \Rightarrow theoretically clean.

Experimental methods

- GLW (Gronau, London, Wyler) [1991]: $D \rightarrow K^+K^-, \pi^+\pi^ A_{CP} = \frac{\Gamma(B \rightarrow D_{CP}K^-) - \Gamma(B^+ \rightarrow D_{CP}K^+)}{\Gamma(B^- \rightarrow D_{CP}K^-) + \Gamma(B^+ \rightarrow D_{CP}K^+)} = \frac{2r_B \sin(\delta_B + \delta_D) \sin\gamma}{1 + r_B^2 + 2r_B \cos(\delta_B + \delta_D) \cos\gamma}$
- ADS (Atwood, Dunietz, Soni) [1997,2001]: $D \rightarrow K^+\pi^ A_{CP} = \frac{\Gamma(B_- \rightarrow [K^+\pi^-]K^-) - \Gamma(B^+ \rightarrow [K-\pi^+]K^+)}{\Gamma(B^- \rightarrow [K+\pi^-]K^-) + \Gamma(B^+ \rightarrow [K-\pi^+]K^+)} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin\gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos\gamma}$
- GGSZ (Giri, Grossman, Soer, Zupan) [2003]: $D \rightarrow K_{s}^{0}\pi^{+}\pi^{-}$ Dalitz plot $D \rightarrow K_{s}^{0}\pi^{+}\pi^{-}$ $d\sigma(m_{*}^{2}, m_{*}^{2}) \sim |A|^{2}dm_{*}^{2}dm_{*}^{2}$, $m_{\pm}^{2} = m^{2}(K_{s}^{0}\pi^{\pm})$, D^{0} amplitude: $A_{D}(m_{*}^{2}, m_{*}^{2})$, \overline{D}^{0} amplitude: $\overline{A}_{D}(m_{*}^{2}, m_{*}^{2})$ Amplitude of $D \rightarrow K_{s}^{0}\pi^{+}\pi^{-}$ from $B^{+}\rightarrow DK^{+}$:

 $A_{D}(m_{+}^{2},m_{-}^{2}) + r_{B}e^{i\delta B + i\gamma} A_{D}(m_{-}^{2},m_{+}^{2}) =$

 $\begin{array}{ll} \textbf{HCD} \\ \textbf{ADS:} \ B^{\pm} \rightarrow D^{(*)} K^{\pm} \ and \ B^{\pm} \rightarrow D^{(*)} \pi^{\pm} \end{array}$

Physics Letters B 777 (2018) 16-30

$\begin{array}{ll} \begin{array}{ll} \textbf{LHCD} \\ \textbf{GLW:} & B^{\pm} \rightarrow D^{(*)}K^{\pm} \ and \ B^{\pm} \rightarrow D^{(*)}\pi^{\pm} \end{array} \end{array}$

 $B^{\pm} \rightarrow DK^{\star\pm}$

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV 1.8 fb⁻¹ @ √s=13TeV

JHEP 11 (2017) 156

ADS: $B^{\pm} \rightarrow DK^{\star\pm}$

JHEP 11 (2017) 156

59

GLW: $B^{\pm} \rightarrow DK^{\star\pm}$

JHEP 11 (2017) 156

60

Results: $B^{\pm} \rightarrow DK^{*\pm}$

JHEP 11 (2017) 156

GGSZ method

$$x_{\pm} \equiv r_{B} \cos(\delta_{B} \pm \gamma) \text{ and } y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma)$$

$$N_{\pm i}^{+} = h_{B^{+}} \left[F_{\mp i} + (x_{+}^{2} + y_{+}^{2}) F_{\pm i} + 2\sqrt{F_{i}F_{-i}}(x_{+}c_{\pm i} - y_{+}s_{\pm i}) \right]$$

$$N_{\pm i}^{-} = h_{B^{-}} \left[F_{\pm i} + (x_{-}^{2} + y_{-}^{2}) F_{\mp i} + 2\sqrt{F_{i}F_{-i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i}) \right]$$

 $F_{i} = \frac{\int_{i} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2} \eta(m_{-}^{2}, m_{+}^{2})}{\sum_{j} \int_{j} dm_{-}^{2} dm_{+}^{2} |A_{D}(m_{-}^{2}, m_{+}^{2})|^{2} \eta(m_{-}^{2}, m_{+}^{2})} \qquad (\overline{B}) \to D^{*\pm} \mu^{\mp} (\overline{\nu}_{\mu}), \ D^{*\pm} \to (\overline{D})^{*} \pi^{\pm}, \ (\overline{D}) \to K_{s}^{0} h^{+} h^{-} h^{-} h^{+} h^{-} h^{+} h^{-} h^{-} h^{+} h^{+} h^{-} h^{+} h^{+} h^{-} h^{+} h^{+} h^{-} h^{+} h^{+} h^{-} h^{+} h^{-} h^{+} h^{-} h^{+} h^{+} h^{+} h^{-} h^{+} h^{+$

LHCb paper 2018-017

0.05

0

contours hold 689

50

GGSZ results

contours hold 68%, 95% CL

50

100

150

γ [°]

PRELIMINARY

150

γ [°]

100

LHCb paper 2018-017

$\begin{array}{c} \textbf{HCD} \\ \textbf{HCD} \\ \textbf{Measurement of CP violation in } B^0 \rightarrow D^{\mp} \pi^{\pm} \end{array}$

$$C_{f} = \frac{1 - r_{D\pi}^{2}}{1 + r_{D\pi}^{2}} = -C_{\bar{f}},$$

$$S_{f} = -\frac{2r_{D\pi}\sin\left[\delta - (2\beta + \gamma)\right]}{1 + r_{D\pi}^{2}},$$

$$S_{\bar{f}} = \frac{2r_{D\pi}\sin\left[\delta + (2\beta + \gamma)\right]}{1 + r_{D\pi}^{2}},$$

$\begin{array}{c} \textbf{HCD} \\ \textbf{Measurement of CP violation in } B^0 \rightarrow D^{\, \mp} \pi^{\pm} \end{array}$

arXiv:1805.03448

HES Measurement of CP violation in $B^0 \rightarrow D^{\mp}\pi^{\pm}$

γ combination

LHCb CONF 2018-002

γ combination

$D^0\mathchar`-\overline{D}{}^0$ mixing and CP violation in $D^0\mathchar`-K^+\pi^-$

Right-sign (RS) $D^0 \rightarrow K^-\pi^+$ is dominated by CF decay

Wrong-sign (WS) $D^0 \rightarrow K^+\pi^-$

has two sources:

LH

Mixing amplitude is time-dependent

Ratio R(t) = $\Gamma_{ws}(t)/\Gamma_{RS}(t)$ depends on x and y:

$$R(t) = R_D + \sqrt{R_D y'} \left(\frac{t}{\tau}\right) + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau}\right)^2 \qquad \begin{pmatrix} x'\\ y' \end{pmatrix} = \begin{pmatrix} \cos\delta & \sin\delta\\ -\sin\delta & \cos\delta \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

$$R^{\pm}(t) = R_D^{\pm} + \sqrt{R_D^{\pm} y^{'\pm}} \left(\frac{t}{\tau}\right) + \frac{x^{'\pm 2} + y^{'\pm 2}}{4} \left(\frac{t}{\tau}\right)^2$$

ICPV: $x'^+ \neq x'^-$

DCPV: $R_n^+ \neq R_n^-$

and/or $y'^+ \neq y'^-$

LHCb THCp

$D^0-\overline{D}^0$ mixing and CP violation by $D^0 \rightarrow K^+\pi^-$

Dataset: 1.0 fb⁻¹ @ √s=7 TeV 2.0 fb⁻¹ @ √s=8 TeV 2.0 fb⁻¹ @ √s=13TeV

Phys Rev D97, 031101 (2018) **70**

$D^0-\overline{D}^0$ mixing and CP violation by $D^0 \rightarrow K^+\pi^-$

LHCb

71

$D^0\text{-}\overline{D}{}^0$ mixing and CP violation by $D^0 \to K^+\pi^-$

 $R_{D}^{+} = 3.454 \pm 0.040 \pm 0.020$ $y^{+} = 5.01 \pm 0.64 \pm 0.38$ $(x^{+})^{2} = 0.061 \pm 0.032 \pm 0.019$ $R_{D}^{-} = 3.454 \pm 0.040 \pm 0.020$ $y^{-} = 5.54 \pm 0.64 \pm 0.38$ $(x^{-})^{2} = 0.016 \pm 0.033 \pm 0.020$

LHCh

 $R_{D} = 3.454 \pm 0.028 \pm 0.014$ $y^{+} = 5.01 \pm 0.48 \pm 0.29$ $(x^{+})^{2} = 0.061 \pm 0.026 \pm 0.016$ $y^{-} = 5.54 \pm 0.48 \pm 0.29$ $(x^{-})^{2} = 0.016 \pm 0.026 \pm 0.016$

 $R_{D} = 3.454 \pm 0.028 \pm 0.014$ y` = 5.28 \pm 0.45 \pm 0.27 x`² = 0.039 \pm 0.023 \pm 0.014

 $A_{D} = (-0.1 \pm 9.1) \times 10^{-3}$

Phys Rev D97, 031101 (2018) 72