Heavy-Ion Physics at the LHC

Ionut Cristian Arsene University of Oslo

IV International Conference on Particle Physics and Astrophysics, Moscow 22-26 October 2018

Why relativistic heavy-ion collisions ?

- QCD studies at low Q, finite temperature T and baryon chemical potential $\mu_{\rm B}$
- Deconfinement (+ chiral symmetry restoration): hadron gas \rightarrow Quark-Gluon Plasma
 - Smooth cross-over at small μ_{B}
 - Critical temperature from Lattice QCD: $T_c \sim 156 \text{ MeV}$

Why relativistic heavy-ion collisions ?

- Critical point and first order phase transition at large μ_B :
 - main physics target for several collaborations (STAR-BES, NA61, CBM, MPD)
- Color superconducting phases (low *T*, very high μ_B): neutron stars

Astrophysics and heavy-ion collisions

J.M.Lattimer, arXiv:1305.3510

- Neutron stars mass controlled by the equation of state (EoS) of nuclear matter
 - "Canonical" mass: 1.4 M_{sun}
 - How can the outliers exist?
 - Stiffer EoS at larger nuclear densities (hyperon matter? QGP cores ?)
- Neutron star mergers
 - EoS an important parameter

Cosmology and relativistic heavy-ion collisions

ALICE Collaboration, PLB754 (2016) 235

- Access early Universe conditions (10-5 s):
 - QGP temperature in Pb-Pb collisions from direct photon measurements: $T \sim 300 \text{ MeV}$

I. Arsene, ICPPA 2018, Moscow

"Standard Model" of high-energy nuclear collisions

Ye measure only at the latest stages but we want to understand the hard partonic and the QGP stages... extremely challenging!

LHC experiments

Bulk (soft) observables

Charged particle production

ALICE, arxiv:1805.04432

- Charged multiplicity per participant pair grows from peripheral towards central collisions
 - Larger number of binary collisions → more entropy production
- Power law increase of produced multiplicity per participant pair with collision energy
 - Stronger increase in AA than in pp collisions!
- I. Arsene, ICPPA 2018, Moscow

Identified particle production

- Screenshot of the fireball at the chemical freeze-out
- Particle yields described by thermodynamics over 7 orders of magnitude with just 3 parameters: volume, temperature and $\mu_{_{R}}$
- Chemical freeze-out temperature: ~153 +/- 2 MeV (similar to Lattice QCD calculations)

Strangeness production

Talk by Victor Riabov Friday 10:00

- Characteristic of QGP formation
 - Rafelski and Mueller 1982
- Universal dependence of strangeness production as a function of event multiplicity independent on collision system (pp, p-Pb and Pb-Pb collisions)
- Strangeness enhancement saturation in central Pb-Pb collisions (grand-canonical regime)

I. Arsene, ICPPA 2018, Moscow

Anisotropic flow

- Initial geometry of the collision is non-uniform (almond shaped)
- Large initial energy density gradients
- Multiple rescatterings in the system
- Sensitive to initial state and key QGP properties like the equation of state, viscosity, transport coefficients

Anisotropic flow

Elliptic (v2) and triangular (v3) flow

ALICE, arxiv:1805.01832

- 2nd harmonic: dominant; exhibits a maximum at mid-central collisions
- 3^{rd} harmonic: less sensitive on centrality \rightarrow mainly related to initial state energy density fluctuations

v_2 measurements vs multiplicity

- Elliptic flow (v_2) measurements available for all colliding systems
 - Challenge to understand results in small systems → collective effects in small systems?

Identified particles v_{2}

ALICE, arXiv:1805.04390

- Low- p_{T} : mass ordering $v_2(\pi) > v_2(K) > v_2(p, \phi, \Lambda) \rightarrow$ strong collective radial flow
- High- p_{τ} : splitting in meson and baryon branches \rightarrow hadronization via quark coalescence

Hard and electro-magnetic probes

High- p_{τ} hadron suppression

- High-p_{τ} hadrons are suppressed even at 100 GeV/c
- Strong energy loss in the QGP medium
- Important measurement for the extraction of transport properties: \hat{q}

Jet suppression in nuclear collisions

ATLAS, arXiv:1805.05635

- Strong centrality dependence → quenching grows with the energy density of the medium
- Jets still suppressed even at ~1 TeV

Photon tagged jets

 $\mathbf{X}_{J_{\mathbf{X}}} = \mathbf{p}_{T^{jet}} / \mathbf{p}_{T^{\mathbf{X}}}$ (for $\Delta \mathbf{\Phi} > 7\pi/8$)

- Photon-tagging: well calibrated initial energy
- Direct measure of energy loss ΔE of the recoil jet
- Energy imbalance grows towards central collisions

I. Arsene, ICPPA 2018, Moscow

Flavour dependence of energy loss

D⁰ PLB 782 (2018) 474

J/ψ EPJC 77 (2017) 269

b→D⁰ CMS-PAS-HIN-18-010

h[±] JHEP 04 (2017) 039

B[±] PRL 119 (2017) 152301

- Low p_{τ} : mass hierarchy
 - $R_{AA}(b) < R_{AA}(c) < R_{AA}(u,d,s)$
- High p_{T} : flavor independence of energy loss

Heavy strange mesons

- First Λ_c measurement in Pb-Pb!
- Charmed baryons less suppressed than mesons

- First B_s⁰ measurement in Pb-Pb!
- Hint of enhancement of B_{s}^{0} wrt B^{+}

CMS, PRL 120(2018)202301 CMS PbPb \s_{NN} = 5.02 TeV ν₂{EP, |Δη|>0.9} 0.25 Prompt D^0 , |y| < 1.00.3 + Charged particle, m 30–50% Pb–Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV < 10 Calculation ns for prompt D Syst, from nonprompt D⁰ - SUBATECH CUJET 3.0 LBT ALICE 0.2 PHSD Other syst |*y*|<0.8 TAMU 0.15 D^0 , D^+ , D^{*+} average • < 0. Syst. from data 0.2 Syst. from B feed-down 0.05 -0.050. -----TAMU LBT PHSD 0-10% 10-30% 30-50% BAMPS el.+rad. **POWLANG HTL** MC@sHQ+EPOS2 IIIIIIII BAMPS el. 22 24 0 8 10 12 16 18 20 6 14 $p_{_{\rm T}}$ (GeV/c) ALI-PUB-132101

- Significant elliptic flow v_2 of charm at the LHC
- Stronger in semi-central collisions
- Does charm take part in the collective motion ?

Event shape engineering and D-meson elliptic flow

ALICE PRL 120 (2018) 102301

- Event shape engineering technique
- D-meson elliptic flow correlated with the overall hydrodynamic flow of the bulk charged particles

J/ψ suppression

ALICE, PLB 734 (2014) 314 ALICE, PLB 766 (2017) 212 PHENIX, PRC 84 (2011) 054912

• Striking observation in central collisions: J/ψ less suppressed at LHC wrt RHIC

J/ψ suppression

ALICE, PLB 734 (2014) 314 ALICE, PLB 766 (2017) 212 PHENIX, PRC 84 (2011) 054912

- Striking observation in central collisions: J/ψ less suppressed at LHC wrt RHIC
- Low- p_{T} : less suppression at LHC wrt RHIC
 - New mechanism of charmonium production \rightarrow in-medium cc recombination

J/ψ suppression

ALICE, PLB 734 (2014) 314 ALICE, PLB 766 (2017) 212 PHENIX, PRC 84 (2011) 054912

Talk by Jakub Kremer Thursday 16:30

- Striking observation in central collisions: J/ψ less suppressed at LHC wrt RHIC
- Low- p_{T} : less suppression at LHC wrt RHIC
 - New mechanism of charmonium production \rightarrow in-medium cc recombination
- High- p_T : strong centrality dependent J/ ψ suppression

I. Arsene, ICPPA 2018, Moscow

Binding energy dependence of quarkonium suppression

CMS, arxiv:1712.08959

CMS, arxiv:1805.09215

- > Bottomonia and high- p_{τ} charmonia
- Increasing suppression towards more central collisions
- Sequential suppression:
 - $R_{AA}^{}\{Y(1S)\} > R_{AA}^{}\{Y(2S)\} > R_{AA}^{}\{Y(3S)\}$
 - > $R_{AA}{J/\psi} > R_{AA}{\psi(2S)}$ (*NB:* Only at high p_{T})
- > Transport model calculations in agreement with data

I. Arsene, ICPPA 2018, Moscow

J/ψ photo-production in Pb-Pb collisions with b<2R

ALICE, PRL116 (2016)222301

Talk by Roman Lavicka Thursday 10:20

- J/ ψ excess observed at very low-p_{τ} in peripheral Pb-Pb collisions
 - Likely origin: coherent photo-production
- Challenge for theoretical models
 - Sensitivity to nuclear gluon PDFs
 - Probe of QGP ?

Direct photons

Talk by Dimitri Peresounko Thursday 10:35

ALICE, PLB 754 (2016) 23-248

ALICE, arXiv:1805.04403

- Direct photons sensitive to the entire history of the collision
- Strong measured elliptic not described by models: puzzle!

Top-quark production in p-Pb collisions

CMS, PRL 119 (2017) 242001

• First observation of the top quark in nuclear collisions

Light-by-light scattering

ATLAS, Nature Physics 13 (2017) 9, 852-858

- Forbidden by classical electro-dynamics
- Natural consequence of QED
- First direct observation of this process
- >4 σ significance
- Cross-section consistent with Standard Model

Photo-produced di-muons in Pb-Pb collisions

- μ⁺μ⁻ pairs balanced in energy and small acoplanarity
- Origin from photo-nuclear interactions
- Acoplanarity broadens towards central collisions
- Muons scatter off electric charges in the plasma

Summary

- A wealth of results from heavy-ion physics at the LHC
- Many first time observations of various processes in heavy-ion collisions
- LHC prepares for a new Pb-Pb run (november 2018) bringing a boost in statistics
- LHC talks in the parallel sessions:
 - Jakub Kremer, Quarkonia and open heavy flavour with ATLAS (thursday 16:30)
 - **Piotr Janus**, Electroweak bosons with ATLAS (thursday 16:50)
 - Arkadiy Taranenko, Anisotropic flow from LHC to SIS (thursday 17:10)
 - Victor Riabov, Light flavors with ALICE (friday 10:00)
 - **Roman Lavicka**, J/ψ photo-production in UPC with ALICE (friday 10:20)
 - **Dimitri Peresounko**, Direct photons with ALICE (friday 10:35)

Backup

Relativistic heavy-ion collisions

- QCD studies (low-Q, finite T and μ)
 - Phase diagram of nuclear matter:
 - deconfinement phase transition
 - Lattice QCD calculations conclude transition is cross-over type (Y.Aoki et al., Nature 443 (2006) 675)
 - "Critical" temperature: $T_c \approx 155-160 \text{ MeV}$

(A.Bazavov et al., arXiv:1111.1710, S.Borsanyi et al., arXiv:1005.3508)

Collision centrality

ALICE Collaboration, PRC88 (2013) 4, 044909

- Centrality determination in ALICE, using the charged particle measurement at forward rapidity (VZERO)
- Multiplicity distribution fitted well by an optical Glauber model which allows the determination of $\langle N_{part} \rangle$ and $\langle N_{coll} \rangle$ for each centrality interval

The nuclear modification factor

$$\begin{split} & \mathsf{N}_{ch} \; \mathsf{p}\text{-Pb:} \; \textit{ALICE PRL110(2013)082302} \\ & \mathsf{N}_{ch} \; \mathsf{Pb}\text{-Pb:} \; \textit{ALICE, Phys.Lett.B720 (2013)52} \\ & \mathsf{N}_{ch} \; \mathsf{Pb}\text{-Pb:} \; \textit{CMS, EPJC (2012) 72} \\ & \mathsf{\gamma}\text{:} \; \textit{CMS, PLB 710 (2012) 256} \\ & \mathsf{W}^{\pm}, \; \textit{CMS, PLB715 (2012) 66} \\ & \mathsf{Z}^{0}, \; \textit{CMS, PRL106 (2011) 212301} \end{split}$$

$$R_{AA} = \frac{1}{N_{coll}} \times \frac{Y_{AA}}{Y_{pp}}$$

 N_{coll} : the number of binary nucleon-nucleon collisions Y_{AA} : yield in AA collisions

- Y_{pp} : yield in pp collisions
- > Superposition of NN collisions $\rightarrow R_{AA} = 1$
- > Suppression $\rightarrow R_{AA} < 1$
- > Enhancement $\rightarrow R_{AA} > 1$
- Weakly interacting particles are not affected by the QGP
 - Photons, W[±] and Z⁰ bosons R_{AA} are compatible with 1