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SM-3 research reactor

Vertical and horizontal
sections of SM-3
reactor

A100 MW thermal power
ACompact core 42x42x35cm
AHighly enriched 23°U fuel

ASeparated rooms for
experimental setup

AThe laboratory is poorly
protected from cosmic rays




Reactor SM-3

antineutrino
detector

100 MW thermal power
Compact core 42x42x35cm

Week protection from cosmic
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Antineutrino detector in
passive shielding

Due to some peculiar characteristics of its construction, reactor SM-3 provides the most favorable conditions to
search for neutrino oscillations at short distances. However, SM-3 reactor, as well as other research reactors, is
located on the Earth’s surface, hence, cosmic background is the major difficulty in considered experiment.



Movable and spectrum sensitive antineutrino detector

detector (5x10 cells)
internal active shielding
external active shielding
steel and lead

borated polyethylene
moveable platform

feed screw

step motor

shielding
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Neutrino Detector
channel prototype
<« outside <
and
inside —
Full -scale
detector

: Liquid scintillator detector
Range of measurements i6 8 12 meters 50 sections 0.235x0.235 x 0 .38 o

Passive shielding - 60 tons



The liquid scintillator detector has volume of 1.8 m?3 (5x10
sections 0.225x0.225x0.85m3, filled to the height of 70 cm).
Scintillator with gadolinium concentration 0.1% was using to
detect inverse beta decay (IBD) events. The first and last detector
rows were also used as an active shielding and at the same time
as a passive shielding from the fast neutrons. Thus, fiducial
volume of scintillator is 1.42 m3.

The method of antineutrino registration is to select correlated

pare of signals: prompt positron signal and delayed signal of
neutron captured by gadolinium.
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Gamma background in passive shielding does not depend neither on the power
of the reactor nor on distance from the reactor
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The background of fast neutrons in passive shielding does not depend
neither on the power of the reactor nor on distance from the reactor

—a— Fast neutrons. Reactor ON.

— —— = —>? 121 —e— Fast neutrons. Reactor OFF.
Fast neutron flux10-3scm?, e . W
cosmic background level E

= Fast neutron flux9 10-5slcm™2
. o 4- |
outside (near reactor wall) =
Inside
0 20 40 60 80 o-—— . . o o
Reactor power, MW 6 7 8 9 10 11

distance from reactor core center (m)

The background of fast neutrons in passive shielding is 10 times less than outside.
The background of fast neutrons outside of passive shielding is defined by cosmic rays and
practically does not depend on reactor power.



Absence of noticeable dependence of the background on both
distance and reactor power was observed. As a result, we
consider that difference in reactor ON/OFF signals appears
mostly due to antineutrino flux from operating reactor.

However, SM-3 reactor Is located on the Earth’s surface.
Cosmic background is the major difficulty in the experiment.



First AS version suppress
background by an order of magnitude

Cosmic background

No AS Time spectra for the 1st version of active shielding (AS) in different configuration.
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Scintillator with gadolinium concentration 0.1% was using to detect inverse beta decay (IBD) events
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The method of antineutrino registration is to select correlated pare of signals:
prompt positron signal and delayed signal of neutron captured by gadolinium.

Time Spectrum
~ Entries 4706
ne 80 r Integral 2245
¥ [ ndf 76.97 /143
prompt d_elayed g pO 5.251+ 0.239
signal signal 7O/ p1 99.06 + 3.48
time of ] - 60
arrival of =
the second g 50
impulse o
T 40
> a
S30
time window —
20
1‘0 > » g 1 0 L .EE"_-' q 3 il ' i . I — '. I |: N il
" 100 s ! [ ot b T et ™ ]
Gd B

1 1 I I - 11 1 | | 111 1 | - I 1 1 1 11 1
50 100 150 200 250 300

time, mcrs

Accidental background

10




ASectioning of the detector The test with a source of fast neutrons
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Monte Carlo calculations has shown that 63% of
prompt signals from neutrino events are recorded
within one section and only 37% of events has signal in
another section. In our measurements, the signal
difference at the reactor ON and OFF has ratio of
double and single prompt events integrated over all
distances (37° 4)% and (63° 7)%.

This ratio allows us to interpret the recorded
events as neutrino events within current
experimental accuracy.
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Energy calibration on model of single section

We use effect of full internal reflection of light on the border scintillator - air at small angeles to improve the light
collection from different distances. Therefore calibration can be done using the sources located outside — above section.
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The source 22Na is
installed above the
detector at distance
about 0.8 meters and
irradiate  about 16
sections at once. PMTs
were normalized to one
energy scale by
selecting voltage on
them. Simultaneous
calibration of several
sections is required. For
all detector only 6
positions of the source
were used.

Overlapping of the
irradiated sections
unifies the calibration.

Energy calibration of the full-scale detector

Pu-Be neutron source

22 Na- gamma source
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The neutron Pu-Be source
irradiated all sections at once.
This method has advantage
relatively to using of internal
sources.  The difficulty of
calibration at energy 8MeV is
that quanta from neutron
capture by gadolinium can't be
absorbed in the same row.
Therefore the detector
calibration should be
conducted on a diffuse edge of
spectrum.
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Energy calibration of the full-scale detector
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In the left - ranges of sources. In the right - the calibration of gamma quanta scale.
Registration of positrons includes inevitable loss of a part of energy of 511keV gamma-quanta. Because of the
threshold of registration in the adjacent section we have to increase errors up to £250 keV.

It is the calibration which needs to be used at data processing.
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Energy calibration of the full-scale detector
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Accidental background practically does not depend on reactor, but it is rather
big at low energies.
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Energy spectrum and signal /background ratio
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Measurements with the detector have
started in June 2016. Measurements
with the reactor ON were carried out
for 480 days, and with the reactor
OFF- for 278 days. In total, the reactor
was switched on and off 58 times.

ON 2-5 days ON

2-5 days ON

ON

2-5 days

8-10 days 8-10 days 8-10 days

OFF OFF

OFF

| J\ Jy

| 1

New detector position New detector position

New detector position
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Results of measurements of the difference in counting rates of neutrino-like events for the detector as
dependence on the distance to the reactor core.

¢ Neutrino-4

x2/DOF 6.82/11 Fit of an experimental dependence with the
law A/L? yields satisfactory result. Goodness
of that fit is 81%. Corrections for finite size
of reactor core and detector sections are
negligible — 0.3%, and correction for
difference between detector movement axes
and direction to center of reactor core is also
negligible — about 0.6%.

Goodness of fit 0.81

1(10%)"- (3851)"

0 ' | ' | : | ' | : | ' |

L (m)

The analysis of distance dependence without energy spectrum is not enough to observe oscillations
because of spectral averaging . 20



a) The ratio of an experimental spectrum of prompt signals to the
spectrum, expected from MC calculations for 3 ranges (~2m) with centers
7.3m, 9.3m and 11.1m
b) polynomial fit of results averaged by distance (red curve)
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Spectrum of prompt signals in the detector for a total cycle
of measurements summed over all distances (average
distance — 8.6 meters). The red line shows Monte -Carlo
simulation with neutrino spectrum of 23U, as the SM-3
reactor works on highly enriched uranium.
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Problems with energy spectrum

1. Calculations of reactor flux can be one of the possible reasons for discrepancy. Taking
Into consideration 0.934 deficiency for an experimental antineutrino flux with respect to the
calculated one, we should discuss not the «bump» 1n 5 MeV area, but the «hole» in 3 MeV
area.

2. We should also consider possibility of systematic errors in calibration of energy scale or
Monte-Carlo calculations of prompt signal spectrum in low energy region. There is a problem
of precise registration of annihilation gamma energy (511 keV) in adjacent sections. Thus,
energy point 1.5 MeV is the most problematic one.

3. Finally, one should take into account influence of oscillations with high sz because we
use 2m interval in analysis. Using such averaging, if sz >5eV then spectrum would be
suppressed by factor 1- 0.5sirf 2g,starting from low energles

Conclusion: The method of the analysis of experimental data should not rely on precise
knowledge of spectrum.
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The model-independent method
of the analysis of experimental data

23



Probability of antineutrino disappearance

2 2
DMy, [eV~]L[m]
_ PG, - n) E sif 2., it (12714 &
| e ¥ P &5 e e
antineutrine | The method of the analysis of experimental data
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h
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The method of the analysis of experimental data should not rely on precise knowledge
of spectrum. One can carry out model independent analysis using equation (2), where
numerator is the rate of antineutrino events with correction to geometric factor 1/L.2 and
denominator is its value averaged over all distances.

ﬁ([(Rﬁfp- RR)ZI( 0D eqsin’ 2,, md)
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The results of the analysis of optimal parameters Dm

We observed the
oscillation effect at
C.L.99.7% (35 )
In  vicinity of :
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2

The results of the analysis of optimal parameters Dm1 4 an

d sin’ A, using C° method
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The method of coherent addition of results of measurements allows us

to directly observe the effect of oscillations
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The method of coherent addition of results of measurements allows us

to directly observe the effect of oscillations

P, - B) ¥ sif 24, gif (1

Since, according to equation (1), oscillation effect depends on ratio L/E, it is beneficial to make

experimental data selection using that parameter.
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Comparison of the blue experimental triangles and the red calculated dots with optimal oscillation parameters.

28



The expected effect at the different interval for distance
and for energy (right part of equation 2)
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av

N(L,E)/N(L,E)

Monte Carlo calculations taking into account the sizes of the zone of the reactor of 42x42x35 cm3.
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Independence of identification of effect of oscillations of a form of a neutrino spectrum
3 different ranges were chosen : 1) U-235, 2) Expetiment, 3) Monte-Carlo

A Observed, 24p, 500keV
expected, 24p, 500keV, U-235

*  predicted, 24p, 500keV, experiment
159 + predicted, 24p, 500keV, Monte-Carlo
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1.0 1.5 2.0 2.5
L/E

Apparently there is no difference. It also should not be because spectra are strictly canceled in formula (2)

oo N(E. L)L [1-sin® 2, sirt (1.2700, L /) ] &

K K K )
K'li N(E. k)L, K7 l?_[l— sin® 214 Sirf (L.2DmE, Lk B )
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About accounting of correlations in the equation 2

exp NK(Ei, L)L B [11; sin® 27, , sirf .27, L /E) ] Ri 2
, r,
K'li N(E, k)L, K& Iii[l— sin? 2g14 sire L.2Dm%5 L B D
K : :
K'li [1- SiN? 200 4 Sir? (1-2'DI’7124L|< E D average 0.82 +-0.01 on dispersion
T \ average spectrum (theory)
0.8%— 2 ]
On the average on all distances =y
from 6 to 12 meters with optimum E
parameters: 0-61=
0.5
Dm124 —~ 73B2 S|n2 Zfl4 -~ O 04;_
O.Bi—
0.2
O"i_
05000~ 5006 ' 5000 ' 4000 5000 6000 7000 8000

Conclusion: correlations on the spectrum are, but they much less statistical errors and we do not consider them yet.
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The first observation of oscillation of reactor antineutrino in sterile neutrino
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Test of systematic effects

To carry out analysis of possible systematic effects one should turn off antineutrino
flux (reactor) and perform the same analysis of obtained data
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a
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z
10 15 20 25 30 35 40 45 - L L Ll N
- 107 sin%(26,,)

data analysis using coherent summation method
analysis of the results on oscillation parameters plane

Thus no instrumental systematic errors were observed. 34
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Explanation of variations in the L/E dependence for a background

/

N, E)YN(L,E)yyerage

=
thn

-
wn
1

=
>
1

o Observed/Background.
{ ié 1000 —
st i
iié; éi."i.ifi . @ P s . § w;m\ 800 -
i E/ 600 —| - -
200 - B background
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
L/E,

Reason - Different positions of the detector are looked through.
This effect in the difference of ON-OFF is subtracted.
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Analysis of possible difference in efficiency of rows of the detector,
using the background of fast neutrons which is given rise into the building from cosmic muons.

100 Selfshilding from
1200 \ fast neutrons inside
1000 __ deteCtor f
:,a 300 — -
§/ 600 —| - -
200 —_ B background

The background of fast neutrons is asymmetric
because of structure of the building.
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The dispersion on a background when moving the
detector is within the same 8%.

We use only 8 internal rows,
the first and tenth are protective. 36



Averaging of detector rows efficiencies due to movements (above estimation)

L(m) Numbers of detector row Average efficiency at various distances

6.4025
6.6375
6.8725
7.1075
7.3425
7.5775
7.8125
8.0475
8.2825
8.5175
8.7525
8.9875
9.2225
9.4575
9.6925
9.9275
10.1625
10.3975
10.6325
10.8675
11.1025
11.3375
11.5725
11.8075
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20 4
Average squared deviation ~ 2.5%
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Test of stability of the effect by means of removal of extreme positions
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detector. The possibility of
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Test of stability of the effect by means of removal of extreme positions

NEUTRINO-4 EXCLUSION, >30
NEUTRINO-4 ACCEPTED, 30
NEUTRINO-4 ACCEPTED, 20

01 02 03 04 05 06 07 08 09
sin®(26,,)

Neutrino-4. Without first 2 positions.

o1 02 03 04 05 06 07 08 09
sin’(20,,)

After removal
of extreme
positions the
effect still is In
limits the 3rd
sigma.

Neutrino-4. Without first 2 and last 2 positions.

01 02 03 04 05 06 07 08
sin(20,,)

Neutrino-4. Without last 2 positions.

o1 02 03 04 05 06 07 08 09
sin(20,,)
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Obtained results should be compared with other results of experiments with
short base line carried out at research reactors and nuclear power plants.

Next slide illustrates sensitivity of other experiments NEOS , DANSS ,
STEREO and PROSPECT together with Neutrino-4.
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Sensitivity of other experiments NEOS , DANSS , STEREO and PROSPECT together with Neutrino-4
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sensitivity regions of various experiments Sire(26.,

(logarithmic scale) region of oscillation effect in linear scale.

Experiment Neutrino-4 has some advantages in sensitivity to big values of DM, owing to a compact reactor core, close minimal
detector distance from the reactor and wide range of detector movements. Next highest sensitivity to large values of Dmf4 belongs
to PROSPECT experiment. Currently its sensitivity is two times lower than Neutrino-4 sensitivity, but it recently has started data
collection so it possibly can confirm or refute our result. 42



Experiment Neutrino-4 has some advantages in sensitivity to
big values of Dmlz4 owing to a compact reactor core, close
minimal detector distance from the reactor and wide range
of detector movements. Next highest sensitivity to large
values of Dm?, belongs to PROSPECT experiment.
Currently its sensitivity Is two times lower than Neutrino-4
sensitivity, but it recently has started data collection so It
possibly can confirm or refute our result.
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Future plans: Experiment Neutrino-6

Neutrino laboratory on the SM-3 reactor in room Nel70

1Sm- 5m
SM-3 reactor
2
Scheme of two detectors AS
| ——
AS AS \(active shielding)
1 [
[
% — Fe 10cm
= CH,B 50cm
PMT 9354
(25X2)

FIG. 22. Scheme of a new experiment on search for neutrino
oscillations 1n room No. 170 of the SM-3 reactor.




Future plans: Experiment Neutrino-6
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Observed, 24p, 500keV, 9 bins. Average by 9
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Neutrino-4. 500 keV. 10 energy bins (1.5-6.5 MeV)

10 energy bins (1.5-6.5 MeV)
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