<u>New data release of GERDA Phase II:</u> search for 0vββ decay of ⁷⁶Ge

Natalia Di Marco Laboratori del Gran Sasso – INFN

on behalf of the GERDA Collaboration

$0\nu\beta\beta$ with GERDA

GERmanium Detector Array (INFN-LNGS, Italy) searches for $0v2\beta$ decay in ⁷⁶Ge using HPGe detectors enriched in ⁷⁶Ge

 $Q_{\beta\beta}$ -value = **2039 keV** in ⁷⁶Ge Energy resolution <4 keV FWHM \rightarrow important for discovery

The GERDA Collaboration

The concept of GERDA

The concept of GERDA

DAQ strategy and phases

Phase I (Nov 2011- May 2013):

- Completed
- Use refurbished HdM and IGEX (18 kg) (+new BEGe Phase II detectors)
- BI ≈ 0.01 cts / (keV kg yr)
- No LAr readout (passive shield)
- Accumulated exposure 21 kg yr

Phase II (Dec 2015- ongoing):

- Add new ^{enr}BEGe detectors (20 kg)
- BI ≈ 0.001 cts / (keV kg yr)
- Goal: 100 kg yr
- First data release Jun 2016 (about 11 kg yr)
- Results on Nature 544 (2017) 47

General strategy

- Blind analysis strategy
- Events at $Q_{\beta\beta} \pm 25$ keV in the blinding box
- Open box when all cuts finalized

Phys. Rev. Lett. 111 (2013) 122503 Nature 544 (2017) 47

Phase II array

Deployed in December 2015

- 40 channels
- 30 ^{enr}BEGe (20 kg)
- 7 ^{enr}Coax (16 kg)
- 3 ^{nat}Coax (8 kg)
- 36 kg of enriched (87%) detectors

Current status: 3 diodes lost (burnout JFET)

String 1	String 2	String 3	String 4	String 5	String 6	String 7
_						
		_	_			

Current data taking

Data taking in progress

- Phase II exposure increased by x3 with respect to Nature paper (Phase IIa)
- Valid exposure accumulated 34.4 kg·yr (18.2 BEGe + 16.2 Coax) up to Apr 15th (Phase IIb)
- A few more kg·yr already in the bag (Apr-Sept) with blinded box of ± 25keV around

June 2017 unblinding

- Box opened for the BEGe dataset only (12.4 kg yr)
- enrCoax data (11.2 kg yr) still in the box
 - PSD does not reject a particular class of background events (α from the groove)
 - Work in progress in order to improve the PSD
- Total unblinded exposure:
 23.3 kg yr from Phase II

Energy Calibration

Energy scale

- Offline, using optimized ZAC filter Eur. Phys. J. C 75 (2015) 255
- Weekly calibrations with ²²⁸Th sources
- Stability monitored online with Test Pulses, injected every 20 s

Energy resolution

- Profile derived from ²²⁸Th calibrations
- Correction (for coax) applied derived from the resolution of the ⁴⁰K and ⁴²K peaks in the physics data
- Accounts for instabilities during the long-term data taking

GERDA spectra

• Most prominent features: ³⁹Ar β (< 500 keV), $2\nu\beta\beta$, ⁴²K and ⁴⁰K γ -rays, α

GERDA spectra

- Most prominent features: ³⁹Ar β (< 500 keV), 2v $\beta\beta$, ⁴²K and ⁴⁰K γ -rays, α
- PSD clears completely the α region
- LAr and PSD complementary
- Final background at $Q_{\beta\beta} O(10^{-3} \text{ cts}/(\text{keV kg yr}))$
- PSD for coaxials to be further optimized (groove α) \rightarrow background will decrease

Background model

The background model (MC), made considering the spectrum before LAr and PSD cuts confirms the background is flat around the ROI and inside the blinding window as in PhaseI

- The expected spectrum is roughly composed by: ~ 30% of events from α, 30% e- from 42K and 30% of γ coming from ²¹²Bi + ²⁰⁸Tl and ²¹⁴Bi + ²¹⁴Pb as in Phase I
- Use the same analysis window as in Phase I:
 - 1930 2190 keV excluding the interval 2104 ±5 keV and 2119 ±5 keV of known peaks

Spectra in the ROI

Spectra in the ROI

Statistical analysis

• Frequentist (preliminary results): Best fit $N^{0v} = 0$ $T^{0v}_{1/2} > 8.0 \cdot 10^{25}$ yr @ 90% C.L. It was $5.3 \cdot 10^{25}$ yr in Phase lia

Median Sensitivity (NO Signal) $T^{0v}_{1/2} > 5.8 \cdot 10^{25}$ yr @ 90% C.L. 30% of MC realizations yield limit stronger than data

- upper limit on
 m_{ββ} < 0.12 0.27 eV
- Bayesian (preliminary results):

 $T^{0v}_{1/2}$ > 5.1·10²⁵ yr @ 90% C.I. Median Sensitivity: $T^{0v}_{1/2}$ > 4.5·10²⁵ yr @ 90% C.I.

	Exposure (kg⋅yr)
Phase I (4 sets)	23.5
Phase II – coax	5.0
Phase II – BeGe	5.8 +12.4 = 18.2

Tot = 46.7 kg∙ yr

Conclusions

- GERDA is running smoothly and with high efficiency
- We have collected more than 35 kg·yr of really good data: i.e. more than 1/3 of Phase II exposure (100 kg·yr)
- With the present release we have obtained:
 - ✓ Limit on $T_{1/2}^{0\nu}$ > 8.0·10²⁵yr (90% CL)
 - ✓ Median Sensitivity: 5.8·10²⁵ yr (better than KamLandZen)
 - ✓ BI(enrCoax): 2.7^{+1.0}_{-0.8} · 10⁻³ cts/(keV · kg · yr)
 - ✓ BI(enrBEGe): 1.0^{+0.6}_{-0.4} ·10⁻³ cts/(keV ·kg · yr)
 - \checkmark m_{ββ} < 0.12 0.27 eV
- With more data we confirm to have reached our background index goal
- Lowest bkg (~10x) in ROI w.r.t experiments using other isotopes
- <1 bkg within 1*FWHM at 100 kg*yr: first background-free experiment in the field
- Next year we are ready to break the wall of 10²⁶ yr in median sensitivity
- This result suggests future Ge experiments with 200 kg and beyond (LEGEND)

LEGEND experiment

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ Decay

219 members, 48 institutions, 16 countries

Collaboration in starting phase

2 Cospokespersons: S. Elliott, S. Schönert

Aim of LEGEND

"The collaboration aims to develop a phased Ge76 based double beta decay experimental program with discovery potential at a half life significantly longer than 10²⁷ years, using existing resources as appropriate to expedite physics results"

LEGEND experiment phases

Phase I

- upgrade of existing GERDA infrastructure @ LNGS up to 200 kg
- Reduction of BI down to 0.6 counts /(FWMH t y) i.e a factor 5 w.r.t GERDA Phase II
- 35 kg from GERDA + 30 kg from Majorana exp + 20 kg from the GERDA Phase II upgrade + the rest to be purchased
- Start by 2021

Phase II

- up to 1000 kg (towards successive steps)
- reduction of BI to 0.1 counts /(FWMH t y) i.e a factor 30 w.r.t GERDA Phase II
- location to be defined
- timeline connected with the U.S DOE selection program

LEGEND performances

⁷⁶Ge (87% enr.)

Previous Phase II results

ARTICLE

Background-free search for neutrinoless double- β decay of ⁷⁶Ge with GERDA

The GERDA Collaboration

- New limit on ⁷⁶Ge T_{1/2} (Phase I+II)
 - T_{1/2} > 5.3.10²⁵ yr @ 90% CL (median sensitivity 4.0.10²⁵ yr)
- Background < 1 cts for the full design exposure
 - Coax: 3.5^{+2.1}_{-1.5} ·10⁻³ cts/(keV·kg·yr), FWHM: 4.0(2) keV
 - BEGe: 7⁺¹¹-5 ·10⁻⁴ cts/(keV·kg·yr), FWHM: 3.0(2) keV
- Bck/ε = 3.5 cts/(FWHM ton yr) [BEGe]

Background reduction

Single Site Energy (SSE) deposition inside the HP-Ge diode Multi Site Energy (MSE) deposition inside the HP-Ge or surface events ICPPA2017 N. Di Marco

- Anticoincidence with the muon veto: MV
- Anticoincidence between detectors (cuts multi site): AC
- Active veto using LAr scintillation: LAr Veto
- Pulse shape discrimination: PSD

LAr veto background suppression

25

energy [keV]

Pulse Shape Discrimination: BEGe

Event classification using the Current/Energy ratio, i.e. A/E variable

Statistical analysis

dataset	exposure [kg·yr]	FWHM [keV]	ε	BI [10 ⁻³ cts/(kevkgyr)]		
PI golden	17.9	4.3(1)	0.57(3)	11±2	CERDA	
PI silver	1.3	4.3(1)	0.57(3)	30±10		
PI BEGe	2.4	2.7(2)	0.66(2)	5 ⁺⁴ -3	Nature 544 (2017) 47	
PI extra	1.9	4.2(2)	0.58(4)	5 ⁺⁴ -3		
PIIa coaxial	5.0	4.0(2)	0.53(5)	3.5 ^{+2.1}		
PIIb BEGe	18.2	2.9 (1)	0.60(2)	1.0 ^{+0.6} -0.4		

Total exposure 46.7 kg

Combined unbinned maximum likelihood fit (flat background + gaussian signal) of the 6 spectra:

- Frequentist: test statistics and method as in Cowan et al., EPJC 71 (2011)1554 (2 side test statistics)
- **Bayesian**: flat prior on $1/T_{1/2}^{0\nu}$ between 0 and 10^{-24} yr⁻¹
- Systematic uncertainties folded as pull terms or by Monte Carlo

Next steps

