

Search for Multi-quark Exotic states with Heavy Flavor at DØ Experiment

Aleksei Popov (Institute for High Energy Physics, Protvino) on behalf of the DØ Collaboration

3RD INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS

ICPPA-2017

OCTOBER 2 - 5, 2017

Moscow, Russia

111

HIS

October 4, 2017

Outline

 \succ Evidence for a X(5568) \rightarrow B_s π

- Confirmation of the X(5568) with semileptonic decays of B_s meson
- > Search for exotic baryons decaying to $J/\psi \Lambda$ pairs

Conclusion

$$\begin{split} X(5568) \rightarrow B^0_s \ \pi^{\pm}, \\ B^0_s \rightarrow J/\psi \varphi \ , \ J/\psi \rightarrow \mu^+\mu^-, \ \varphi \rightarrow K^+K^-. \end{split}$$

Event reconstruction and selection

D0 Run II integrated luminosity 10.4 fb⁻¹

 $\begin{array}{l} p_{T}(\mu) < 1.5 \ \text{GeV/c;} \\ 2.\ 92 < M(\mu\mu) < 3.\ 25 \ \text{GeV/c^{2};} \\ p_{T}(K) > 0.7 \ \text{GeV/c;} \\ 1.012 < M(K^{+}K^{-}) < 1.03 \ \text{GeV/c^{2}} \\ 5.303 < M(J/\psi\ K^{+}K^{-}) < 5.423 \ \text{GeV/c^{2};} \end{array}$

 $\begin{array}{l} p_{T}(\pi) > 0.\,5\,\,GeV/c;\\ p_{T}\!\left(B_{s}^{0}\pi\right) > 10\,\,GeV/c; \end{array}$

$$\label{eq:alphaR} \begin{split} \Delta R &= \sqrt{\Delta \phi^2 + \Delta \eta^2} < 0.3 \text{, the "cone"} \\ & \text{cut between } B_s \text{ and } \pi. \end{split}$$

 $M(B_{s}\pi) = M(J/\psi\phi\pi) - M(J/\psi\phi) + M(B_{s}),$ where M(B_s) = 5.3667 GeV/c² 5.5 < M(B_s\pi) < 5.9 GeV/c²

Background:

a.) Real B_s – modeled by MC; b.) non-B_s (combinatorial) – taken from B_s sidebands (data). Both have a similar shape and were combined in right proportion.

Background parametrization:

 $(c_1 + c_2 \cdot m^2 + c_3 \cdot m^3 + c_4 \cdot m^4) \times Exp(c_5 + c_6 \cdot m + c_7 \cdot m^2)$, where $m = M - 5.5 \text{ GeV}/c^2$.

Signal: Relativistic S-wave Breit-Wigner convoluted with Gaussian resolution $\sigma = 3.8 \text{ MeV/c}^2$.

Fitting function: $N_X \cdot F_{sig}(m, M_X, \Gamma_X) + f_{bkg} \cdot F_{bkg}(m)$, with free N_X , M_X , Γ_X , f_{bkg} .

V.M. Abazov et al (D0 Collaboration), Phys. Rev. Lett. 117, 022003 (2015)

A. Popov (Institute for High Energy Physics, Protvino)

Background parametrization

Background distribution is obtained from MC and reweighted to data.

 $F_{bgr}(m) = (C_1 \cdot m + C_2 \cdot m^2 + C_3 \cdot m^3 + C_4 \cdot m^4) \times exp(C_5 \cdot m + C_6 \cdot m^2), \text{ where } m = M \cdot M_{thr}$

Several alternative parametrizations of the background were used to model the background for background shape systematics estimation.

Fit to data

 $F_{fit}(m, M_x, \Gamma_X) = f_{bgr} \cdot F_{bgr}(m) + f_{sig} \cdot F_{sig}(m, M_x, \Gamma_X)$

where $F_{sig}(m, M_x, \Gamma_x)$ - S-wave BW function convoluted with resolution (including missing neutrino effect), f_{bgr} , f_{sig} normalization coefficients.

$$\begin{split} M_x &= 5566.~7^{+3.6}_{-3.4}~\text{MeV/c}^2\\ \Gamma_x &= 6.~0^{+9.5}_{-6.0}~\text{MeV/c}^2\text{ , } N_{ev} = 139^{+51}_{-63} \end{split}$$

A. Popov (Institute for High Energy Physics, Protvino)

Local statistical significance

 $-2 \cdot \ln \frac{\mathcal{L}_0}{\mathcal{L}_{\max}}$

4.5σ from the fit, **3.2**σ with the systematic uncertainties.

Systematic uncertainties

Background shape description, background reweighting, B_s mass scale (MC and data), detector resolution and missing neutrino effect, P-wave Breit-Wigner.

Comparison with hadronic channel

	Semileptonic	Hadronic, ΔR cut	Hadronic, no ΔR cut
Fitted mass, MeV/c^2	$5566.7^{+3.6}_{-3.4} \ ^{+1.0}_{-1.0}$	$5567.8 \pm 2.9^{+0.9}_{-1.9}$	5567.8
Fitted width, MeV/c^2	$6.0^{+9.5}_{-6.0} {}^{+1.9}_{-4.6}$	$21.9 \pm 6.4^{+5.0}_{-2.5}$	21.9
Fitted number of signal events	$139^{+51}_{-63} {}^{+11}_{-32}$	$133 \pm 31 \pm 15$	106 ± 23

Results in semileptonic channel are compatible with those in hadronic channel within uncertainties.

ICPPA-2017

A. Popov (Institute for High Energy Physics, Protvino)

X(5568) \rightarrow B_s π with semileptonic decays of the B_s mesons

	Semileptonic	Hadronic, ΔR cut	Hadronic, no ΔR cut
Local significance	4.5σ	6.6σ	4.8σ
Significance with systematics	3.2σ	5.6σ	-
Significance LEE+systematics	-	5.1σ	3.9σ
$\begin{array}{l} \mbox{Combined significance} \\ p_{comb} = p_{sl} \cdot p_{had} \cdot \left[1 - \ln(p_{sl} \cdot p_{had})\right], \\ p_{comb} = 5.6 \cdot 10^{-9} (1.1 \cdot 10^{-6} \mbox{ without } \Delta R \mbox{ cut}) \mbox{ which corresponds to combined significance} \\ \hline 5.7 \sigma (4.7 \sigma \mbox{ without } \Delta R \mbox{ cut}) \end{array}$			
1000 N B00 M B	y, 10.4 fb ¹ Calc o p(2 whi 2.2 2.3 [GeV/c ²]	Production ratio of sulated by fitting $M(\phi \pi)$ pposite sign and same $K(5568)/B_s) = 7.3^{+2.3}_{-2.4}$ ch is in agreement wit in the hadronic	X(5568) to B_s c) distributions in the sign $D_s \mu$ samples. (stat) ^{+0.6} / _{-1.7} (syst)% h the ratio measured channel.

Search for exotic baryons decaying to $J/\psi\,\Lambda$

- Observation of two J/ ψ p states named P_c around 4380 MeV/c² and 4450 MeV/c² in $\Lambda_b \rightarrow J/\psi$ p K⁻ decays reported by LHCb.
- Numerous states with the quark contents including $c\overline{c}$ pair and three light quarks are expected to exist within 500 MeV of the J/ ψ p threshold.

Search in the M(J/ $\psi \Lambda$), where J/ $\psi \rightarrow \mu\mu$, $\Lambda \rightarrow p\pi^{-}$.

Event reconstruction

D0 Run II integrated luminosity 10.4 fb⁻¹

 $\begin{array}{l} {\sf p}_{\sf T}(\mu)>1~{\rm GeV/c;}~{\sf p}_{\sf T}(\mu\mu)>4~{\rm GeV/c}\\ {\sf 2.92}<{\sf M}(\mu\mu)<3.25~{\rm GeV/c^2}\\ {\sf p}_{\sf T}(\Lambda)>0.7~{\rm GeV/c}\\ {\sf 1.110}<{\sf M}(\Lambda)<{\sf 1.122~{\rm GeV/c^2}}\\ {\sf p}_{\sf T}(\pi)>0.15~{\rm GeV/c} \end{array}$

Non-prompt: J/ψ decay length significance in the transverse plane is greater than 3 and Λ decay vertex is closer to J/ψ decay vertex than to the primary vertex.

A. Popov (Institute for High Energy Physics, Protvino)

Search for exotic baryons decaying to $J/\psi \Lambda$

Search procedure

Binned maximum likelihood fits to the distribution of the J/ ψ Λ invariant mass in the range from the J/ ψ Λ threshold to 4.7 GeV/c².

$$\begin{split} F_{fit}(M,M_{x'}\Gamma_x) = & f_{bgr} \cdot F_{bgr}(M) + f_{sig} \cdot F_{sig}(M,M_x,\sigma_x), \\ \text{where } F_{sig}(M,M_{x'}\sigma_x) - \text{Gaussian function with } M_{x'},\sigma_x; \ f_{bgr'}, f_{sig} - \\ & \text{normalization coefficients.} \\ F_{bgr}(M) \propto M \cdot (M^2/M_{thr}^2 - 1)^{c_1} \cdot e^{-c_2M} \cdot (1 - e^{-(M-M_{thr})/b}), \\ & \text{where } M_{thr} \text{ is the } J/\psi \Lambda \text{ threshold} \end{split}$$

Search for exotic baryons decaying to $J/\psi \Lambda$

Mass fits of the sum of signal + background or background only to the data were performed with the signal mass set at fixed values in 10 MeV steps. Local statistical significance is defined as $\sqrt{-2 \cdot \ln (\mathcal{L}_0/\mathcal{L}_{max})}$. The highest local significance of **3.45** σ occurs at M = 4.32 GeV/c². If LEE (computed in the same 500 MeV interval) is taken into account it leads to the global significance of **2.8** σ .

No evidence for new baryons decaying to $J/\psi\,\Lambda$

A. Popov (Institute for High Energy Physics, Protvino)

Conclusion

- → <u>X(5568)</u>→ <u>B_sπ, B_s</u>→ <u>J/ψφ(1020)</u>. We report evidence for a narrow structure, X(5568). This is evidence for the first instance of a hadronic state with valence quarks of four different flavors (u,d,b,s). The statistical significance of this evidence is 5.1σ with ΔR <0.3 cut and 3.9σ without it. V.M. Abazov et al (D0 Collaboration), Phys. Rev. Lett. 117, 022003 (2016)
- X(5568)→ B_sπ, B_s→ D_sµX. There is an excess of events in the data consistent with the decay X(5568) → B_sπ, B_s → J/ψ φ. The mass, natural width and production rates in the semileptonic and hadronic channels are consistent. Combined significance for semileptonic and hadronic channels is 5.7σ.

https://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B68/

Search for exotic baryons $\rightarrow J/\psi \Lambda$. In the mass range between threshold and 4.7 GeV/c² no evidence for new baryons decaying to $J/\psi \Lambda$ have been found, the most significant deviation from background-only hypothesis is seen at M($J/\psi \Lambda$)= 4.32 GeV/c² with a global significance (including LEE) 2.8 σ .

https://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B69/

Backup slides

TABLE I: Systematic uncertainties for the observed $A^{-}(5508)$ state mass, natural width, and event number.			
Systematic uncertainty	mass, MeV/c^2	width, MeV/c^2	Events, $\%$
Background shape			
a) MC sample soft or hard	+0.2; -0.6	+2.6; -0.	+8.2; -0.
b) Sideband mass ranges	+0.2; -0.1	+0.7; -1.7	+1.6; -9.3
c) Sideband mass calculation method	+0.1; -0.	+0.; -0.4	+0; -1.3
d) MC to sideband events ratio	+0.1; -0.1	+0.5; -0.6	+2.8; -3.1
e) Background function used	+0.5; -0.5	+0.1; -0.	+0.2 ; -1.1
f) B_s^0 mass scale, MC and data	+0.1; -0.1	+0.7; -0.6	+3.4; -3.6
Signal shape			
a) Detector resolution	+0.1; -0.1	+1.5; -1.5	+2.1; -1.7
c) Non-relativistic BW	+0.; -1.1	+0.3; -0.	+3.1; -0.
d) P-wave BW	+0.; -0.6	+3.1; -0.	+3.8; 0.
Others			
a) Binning	+0.6; -1.1	+2.3; -0.	+3.5; -3.3
Total	+0.9 ; -1.9	+5.0; -2.5	+11.4 ; -11.2

TADIE I. Sustainetic uncertainties for the channel $V^+(5569)$ state mass natural width and event number

A. Popov (Institute for High Energy Physics, Protvino)

Alternative background parametrizations

- 1. $F_{bgr}(M) = (C_1 + C_2 \cdot m^2 + C_3 \cdot m^3 + C_4 \cdot m^4) \times exp(C_5 \cdot m + C_6 \cdot m^2)$, where $m = M \Delta$, $\Delta = 5.5 \text{ GeV}/c^2$.
- 2. $F_{bgr}(M) = M \cdot \left(\frac{M^2}{M_{thr}^2} 1\right)^{C_1} \times \exp(C_2 \cdot M)$, where M_{thr} is a $B_s \pi$ threshold.
- 3. Histogram smoothing (one iteration of 353QH algorythm).

	Parametrization (1)	\mathbf{P} arametrization (2)	Farametrization (5)
Fitted mass, MeV/c^2	$5566.2^{+4.2}_{-4.1}$	$5566.0^{+3.6}_{-3.4}$	5564^{+5}_{-5}
Fitted width, MeV/c^2	$6.0^{+12.0}_{-6.0}$	$6.5^{+8.9}_{-6.5}$	10^{+17}_{-10}
Fitted number of signal events	$115.9^{+51.8}_{-47.7}$	$145.7^{+50.7}_{-54.3}$	136_{-48}^{+59}
Local significance	3.7σ	4.7σ	3.9σ

b3

Systematic uncertainties

Source	mass, MeV/c^2	width, MeV/c^2	event yield, events
Background shape description	+0.0; -0.7	+0.7; -2.5	+4.8; -28.0
Background reweighting	+0.1; -0.1	+0.7; -0.7	+5.0; -5.0
B_s^0 mass scale, MC and data	+0.3; -0.5	+1.0; -1.4	+7.5; -9.6
Detector resolution	+0.0; -0.5	+1.3; -2.6	+3.7; -6.4
<i>P</i> -wave Breit-Wigner	+0.0; -0.2	+0.0; -2.4	+0.0; -7.0
Missing neutrino effect	+1.0; -0.0	-	-
Total	+1.0; -1.0	+1.9; -4.6	+10.9; -31.5