

Measurement of the cosmic-ray electron and positron spectrum and anisotropies with the Fermi LAT

Francesco Loparco (Bari University and INFN)

on behalf of the Fermi LAT Collaboration

The Fermi mission

- Launched by NASA on 2008 June 11, from Cape Canaveral, Florida
 - Almost circular orbit, at 565 km altitude and 25.6° inclination
- Science mission started on August 2008

Gamma-ray Space Telescope

• Mission extended until 2018 after the NASA Senior Review in 2016

- The Fermi Gamma-Ray Space Telescope is an international Science Mission exploring the gamma-ray sky by means of its two main instruments:
 - Gamma-ray Burst Monitor (GBM): 8 keV → 40 MeV
 - Large Area Telescope (LAT): 20 MeV → > 300 GeV
- Huge energy range: including largely unexplored band for a total of >7 energy decades!

Precision Si-strip Tracker (TKR)

• Measures incident γ-ray direction

Gamma-ray pace Telescope

- 18 XY tracking planes: 228 µm strip pitch
- High efficiency. Good position resolution
- 12x 0.03 X₀ front end \rightarrow reduce multiple scattering
- $4 \times 0.18 X_0$ back-end \rightarrow increase sensitivity >1 GeV

Anticoincidence Detector (ACD)

- 89 scintillator tiles
- First step in the reduction of large charged cosmic ray background
- Segmentation reduces self-veto at high energy

Hodoscopic CsI Calorimeter

- Segmented array of 1536 CsI(Tl) crystals
- 8.6 X₀: shower max contained
 - $\sim 200 \text{ GeV normal} (1.5X_0 \text{ from TKR included})$
 - ~ 1TeV @ 40° (CAL-only)
- Measures the incident γ-ray energy
- Rejects cosmic-ray background

Electronics system

Includes flexible, highly efficient, multi-level trigger

The LAT as an e⁺/e⁻ detector

- Gamma-ray detection:
 - Look for an electromagnetic cascade
 - − Reject incident charged particles → ACD
- Electron detection:
 - Also an electromagnetic cascade! (removed charge veto, tighten the other cuts)
 - The LAT does not distinguish between e⁻ and e⁺, we use the word "electrons" to refer to both

Onboard trigger and filtering

- Five hardware trigger primitives
 - TKR: 3 x + 3 y tracker planes hit in a row
 - CAL LO: single log with more than 100 MeV
 - CAL HI: single log with more than 1 GeV
 - ROI: MIP signal in a ACD tiles close to a triggering tower
 - CNO: heavy ion signal in the ACD
- Upon L1 trigger the entire detector is read out
- Need onboard filtering to fit the data volume within the allocated bandwidth
 - Gamma
 - Selects γ -ray candidates and events depositing >20 GeV in the CAL
 - High-energy events, including electrons, available for analysis on ground
 - Heavy lons
 - Selects heavy ion candidates with large energy deposits in the ACD
 - MIP
 - Selects not showering charged particles (protons)
 - Disabled in standard science operations
 - Diagnostic
 - Selects an unbiased event sample for filter and background performance studies
 - The selected sample is prescaled of a factor 250

Event selection

Gamma-ray Space Telescope

- Data sample:
 - Data collected from Aug 4, 2008 to June 24, 2015 (~7 years)
 - ~4.7 years live time
- High-energy analysis (E > 42 GeV)
 - Events selected by the gamma filter
- Low-Energy analysis (7 GeV < E < 70 GeV)
 - Events selected by the diagnostic filter
 - The sample is prescaled by a factor 250
- Pre-cuts:
 - Events with a well reconstructed track
 - Path length through the CAL $> 8X_0$
 - Angle of the track with respect to the LAT z-axis <60°
 - Fit of the shower profile with χ^2/n . *d*. *f*. < 20
 - Further cuts on the ACD signal and on the TKR time over threshold
 - These quantities are corrected taking path-length into account
 - Cuts needed to remove the residual contamination from heavy ions
 - Above 42 GeV the residual non-proton background after pre-cuts is negligible
- Further selection made using Boosted Decision Trees (BDTs)
 - Selection is based on topological information
 - BDTs are trained with Monte Carlo simulations

Event topologies: electron vs hadron

Candidate electron 475 GeV raw energy, 834 GeV reconstructed

Gamma-ray Space Telescope

- Well defined (not fully contained) symmetric shower in the calorimeter.
- Clean main track with extra clusters close to the track (note backsplash from the calorimeter).
- Relatively few ACD tile hits, mainly in conjunction with the track.

Candidate hadron 823 GeV raw energy, 1 TeV reconstructed

- Large and asymmetric shower profile in the calorimeter.
- Small number of extra clusters around main track, many clusters away from the track.
- Different backsplash topology, large energy deposit per ACD tile.

Acceptance and contamination

Gamma-ray Space Telescope

- > For the high-energy analysis a pure proton MC background sample is used
- ➢ For the low-energy analysis the MC background sample consists of charged cosmic rays (both primaries and secondaries) and Earth limb photons

Energy resolution

Gamma-ray Space Telescope

- Long path events are events with path length > 12 X₀ in the CAL
 They correspond to ~15% of the dataset
 - □ These events are used to check systematics on the energy measurement

The CRE energy spectrum

Differences up to 30% wrt previous results:

- Below 30 GeV the
 previous analysis did
 not take into account
 the loss of CREs due to
 the geomagnetic field
- The previous analysis did not include "ghost events" in the MC simulation

> The spectrum is well fitted by a broken power law:

Break energy: 53±8 GeV

Gamma-ray

- Spectral index below the break: 3.21±0.02
- Spectral index above the break: 3.07±0.02
- > An exponential cutoff lower than 1.8 TeV is excluded at 95% CL

Search for anisotropies in the CRE arrival directions

- The search is performed using the high-energy data sample
 - 9 energy bins between 42 GeV and 2 TeV
 - Energy dependent field of view to avoid distortions in the distribution of CRE arrival directions due to geomagnetic effects
- The observed sky map in each energy bin is compared with a reference (isotropic) sky map:
 - Direct pixel-to-pixel comparison
 - Comparison of integrated count maps
 - Each pixel is assigned the counts of all pixels within a circular region of given integration radius centered on the given pixel
 - Are used to search for anisotropies of the same angular scale as the integration radius
 - The counts in different pixels are correlated!
 - Spherical harmonic analysis of fluctuation maps
 - The auto-angular power spectra (APS) are evaluated
 - Each multipole coefficient C_l is sensitive to anisotropies at an angular scale $\sim 180^{\circ}/l$
- The reference sky maps are built starting from observed data
 - The comparison of the actual sky maps with the reference sky maps avoids features which could arise from the calculation of the exposures

- Two methods implemented to build the reference sky maps:
 - Method 1 ("shuffling" technique)
 - Event times taken from observed events
 - Event directions in the LAT taken from observed events
 - Method 2 ("event rate" technique)
 - Event times generated from an exponential distribution with the same average rate as in real data
 - Event directions in the LAT generated from the observed distribution $P(\vartheta, \varphi)$
- These methods have been validated with dedicated MC simulations

Significance for integrated sky maps

Gamma-ray Space Telescope

Significances shown in these plots are pre-trials!

Angular power spectra (APS)

Gamma-ray Space Telescope

• The measured APS are consistent with the white noise APS in all the energy bins

- The dipole anisotropy is evaluated from the multipole coefficient C_1 of the APS: $\delta = 3\sqrt{C_1/4\pi}$
- The measured values are consistent with those expected in the isotropic case
- Upper limits on C_1 are converted into upper limits on δ

Interpretation of the results

Space Telescope

- The CRE spectrum can be reproduced assuming the presence of an additional high-energy source
- The Galactic CRE component is evaluated using a simulation based on the DRAGON propagation code
- We have evaluated the contributions from two possible sources:
 - Vela (d=290pc, T=10⁴ yrs)
 - Monogem (d=300pc, T=10⁵ yrs)
 - The injected luminosity of each source is such that the total flux is not higher than the one measured by the Fermi-LAT and AMS-02
 - The injection spectrum of both sources is a power law with spectral index 1.7 and cut-off energy at 1.1 TeV
- The anisotropy limits disfavor a scenario with a nearby young source

Conclusions

- The Fermi LAT has measured the energy spectrum of CREs in the range 7 GeV 2 TeV
 - The spectrum is well fitted by a broken power law with break at ~50 GeV and spectral index of 3.07 above 50 GeV
 - An exponential cutoff lower than 1.8 TeV is excluded at 95% CL
- A search for possible anisotropies in the arrival directions of CREs in the energy range 42 GeV 2 TeV has been performed
 - No anisotropies detected
 - Upper limits on the dipole anisotropy <1% in the whole energy range
 - The constraints on the anisotropy data can probe the presence of nearby young or middle-aged CRE sources
- For further details:
 - S. Abdollahi et al., Phys. Rev. D 95, 082007 (2017)
 - S. Abdollahi et al., Phys. Rev.Lett. 118, 091003 (2017)