

NRC «Kurchatov Institute» – ITEP, Moscow, Russia

Test of the nuclear fragmentation models with Carbon fragmentation at 300 -950 MeV/n

> B.M.Abramov, P.N.Alekseev, Yu.A.Borodin, S.A.Bulychjov, I.A.Dukhovski, A.I.Khanov, A.P.Krutenkova, <u>V.V.Kulikov</u>, M.A.Martemianov, M.A.Matsyuk, E.N.Turdakina

> > NRC «Kurchatov Institute» - ITEP, Moscow, Russia

K.K. Gudima

Institute of Applied Physics, Chisinau, Moldova

The 3-rd International Conference on Particle Physics and Astrophysics

Moscow

Experiment FRAGM at ITEP TWAC ${}^{12}C + A \rightarrow f + X$ (inverse kinematics)

fragments: ¹²C kinetic energy: fragment angle: different targets: sensitivity:

p, d, t, ³He, ⁴He, ⁶He, ⁶Li,..., ¹⁰C, ¹¹C, ¹²C 0.3 – 3.2 GeV/nucleon on Be target 3.5° with respect to ¹²C beam Be, Al, Cu, Ta for ¹²C beam of 0.3 GeV/n up to 5 orders of the cross section magnitude

I will focus on the results of the runs at 0.3, 0.6 and 0.95 GeV/n $\,$

- good data for carbon fragmentation are needed for overall understanding of nucleus-nucleus collisions
- the carbon fragmentation in this energy region is also important for application in ion therapy where fragmentation is a main source of irradiation behind the Bragg peak
- few ion-ion interaction models exist that aim at precise description of fragmentation processes. They have to be tested at different processes and at wide kinematical region.

TWAC – ITEP

TWAC – TeraWatt Accumulator Complex TWAC last parameters \checkmark Proton acceleration : 50 - 10000 MeV \checkmark Ion acceleration : up to 4 GeV/nucleon \checkmark Ion accumulation : up to 700 MeV/nucleon ✓ Accelerating ions : up to ⁵⁶Fe \checkmark As a result of the strong fire accident in 2012, TWAC decommissioned. The was restoration / modernization of the accelerating-storage complex is a priority task of ITEP

Experiment FRAGM

C - Be collisions at different T_0

 $T_0 = 0.3 \text{ GeV/nucleon}$

 $T_0 = 0.6 \text{ GeV/nucleon}$ $T_0 = 0.95 \text{ GeV/nucleon}$

✓ QDC (from CF1) vs TDC between CF1 and C2

 \checkmark Regions of the different fragments are well separated and can be clearly selected

10

1

10

10⁻²

 10^{-3}

2

3

4

Measured spectra of the fragments

 $T_0 = 0.3 \text{ GeV/nucleon}$

⁷Li

⁸He

⁴He

5

 ✓ Measured up to 21 fragments from proton to ¹²C (at T₀ = 0.95 GeV/nucl. only 18)
 ✓ Differential cross sections for protons at all energies have been included in the Experimental Nuclear Reaction Data (EXFOR).

✓ Binary Cascade (BC, GEANT4 toolkit, G. Folger *et al.*, EPJA 21 (2004) 407) :

- Either projectile or target has to be ${}^{12}C$ or lighter
- Original approach to intra-nuclear cascade
- ✓ Quantum Molecular Dynamics (QMD, GEANT4 toolkit)
 - T. Koi et al., AIP Conf. Proc. 896 (2007) 21:
 - Can be used with light and heavy ions
 - All nucleons are considered as participants and they are propagated in phenomenological potential
- ✓ Liege Intranuclear Cascade (INCL++, J. Dudouet *et al.*, PR C89 (2014) 054616) :
 - > Model is alive, often modified, in the GEANT4, projectiles lighter than A = 18?
 - Combines best features of the BC and QMD
- Los Alamos version of Quark Gluon String Model (LAQGSM03.03)
 LA-UR-11-01887, experts S. Mashnik and K. Gudima
 - First stage is the intranuclear time-dependent cascade developed at JINR
 - Can be used in a wide energy range up to 1 TeV/nucleon for all ions

Comparison : FRAGM data vs models

Differential cross sections at $T_0 = 0.3 / 0.6 / 0.95$ GeV/nucleon

INCL++ predictions give better description of FRAGM data

INCL++ predicts the cross section normalization better than other models

LF kin. energy spectra in projectile rest frame

 \succ In the projectile rest-frame the kinetic energy spectra (T) can be described by a sum of two exponents with slope parameters T_s (evaporation region) and T_c (high momentum or cumulative tail) in the form :

> Two

with

Slope T_C rises with increase of projectile kinetic energy. For pA it is 50 MeV at high energy.

Slope T_C decreases with fragment atomic number.

✓ Model INCL++ predicts rather well energy dependence for T_C for protons and deuterons, but fails to do it for ⁴He.

Fragment	T _C (Me	T [*]		
	$(T_0 = 300 \text{ MeV})$	$(T_0 = 600 \text{ MeV})$	$(T_0 = 950 \text{ MeV})$	$\mathbf{I}_{\mathbf{C}}[\mathbf{T}]$
р	18.7 ± 0.4	26.5 ± 0.6	34.3 ± 1.2	25.5 ± 1.0
² H	15.1 ± 0.7	16.8 ± 0.4	21.9 ± 1.9	16.0 ± 1.0
³ H	12.5 ± 0.9	16.6 ± 0.6		15.0 ± 1.0
³ He	10.1 ± 0.6	16.8 ± 2.2	25.4 ± 12.2	19.0 ± 1.0
⁴ He	12.1 ± 0.3	12.4 ± 0.6	15.0 ± 0.2	14.0 ± 1.0

 $T_{C}[*]$ T. Odeh et al., PRL 84 (2000) 4557, ¹⁹⁷Au – ¹⁹⁷Au collisions at 1 GeV/nucl.

> T_c decreases smoothly as the fragment atomic number grows and rises with energy

✓ Fragment yields in the reaction ${}^{12}C + Be \rightarrow f + X$ were measured at ion incident energies 0.3, 0.6, 0.95 GeV/nucleon in the FRAGM experiment at TWAC at ITEP

✓ Differential cross sections for a wide range of fragments were obtained

✓ Fragment momentum spectra were compared with the predictions of four ion–ion interaction models: INCL++, LAQGSM03.03, QMD and BC

 \checkmark Fragment kinetic energies spectra in the rest frame of the projectile for light fragments can be fitted with the sum of two exponent with different slope parameters

✓ In the coalescence model, yield of the fragments is determined by composition of the invariant nucleon distribution with empirical coefficient C_A in the form:

$$(1/p_A)(d^2\sigma/dT_A d\Omega) = C_A(1/p_p d^2\sigma/dT_p)^A$$

 $T_A = AT_p$, $p_A = Ap_p$, C_A - coalescence coefficient, A - fragment mass number

 \checkmark "Radius" of the source in momentum space p_0 can be calculated from C_A :

$$p_0^{3} = 3m_{nucl} \sigma_{tot} x! y! ((Z_{proj} + Z_{targ})/(N_{proj} + N_{targ}))^{y} (x + y)^2 C_A^{1/(x + y - 1)}$$

Z, N – proton and neutron numbers, x + y = A (proton and neutron numbers for fragment) σ_{tot} – total cross section for C – Be collision :

 $\sigma_{tot} = 772.8 \text{ mb} (T_0 = 0.3 \text{ GeV}), \ \sigma_{tot} = 823.8 \text{ mb} (T_0 = 0.6 \text{ GeV}), \ \sigma_{tot} = 856.7 \text{ mb} (T_0 = 0.95 \text{ GeV})$

 \checkmark Space radius of the source R is given by the formula:

$$V = 4/3 \ \pi R^{3} = (x!y!)^{1/(x+y-1)} (3h/4\pi \widetilde{p}_{0}^{3})$$

Coalescence parameters

Energy, MeV/nucl.	σ0, mb	Fragment	CA, [mb/sr(GeV) ²] ^{1-A}	${\widetilde p_{_0}}$, MeV/c	<i>R</i> , fm
300	772.86	$^{2}\mathrm{H}$	$(1.73 \pm 0.41) \times 10^{-5}$	122 ± 10	3.9 ± 0.3
		³ H, ³ He	$(6.30 \pm 0.85) \times 10^{-10}$	186 ± 4	2.9 ± 0.1
		⁴ He	$(6.93 \pm 1.44) \times 10^{-15}$	198 ± 5	2.8 ± 0.1
600	823.8	$^{2}\mathrm{H}$	$(3.47 \pm 0.25) \times 10^{-5}$	157 ± 4	3.0 ± 0.1
		³ H, ³ He	$(5.51 \pm 0.73) \times 10^{-10}$	186 ± 4	2.9 ± 0.1
		⁴ He	$(6.46 \pm 1.29) \times 10^{-15}$	201 ± 4	2.8 ± 0.1
950	856.73	$^{2}\mathrm{H}$	$(1.02 \pm 0.10) \times 10^{-5}$	106 ± 4	4.5 ± 0.2
		³ H, ³ He	$(1.87 \pm 0.11) \times 10^{-10}$	157 ± 1	3.4 ± 0.1
		⁴ He	$(2.89 \pm 0.37) \times 10^{-15}$	186 ± 3	3.0 ± 0.1

 $R({}^{12}C(g.s.)) = 2.5Fm$, $R({}^{12}C(7.65MeV)) = 2.9Fm$