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Motivation and plan 2

Wormholes: why GR, why spherical symmetry?

Fluid formalism in spherical symmetry: most general problem
statement

Isotropic matter: no-go theorem. No asympt. flat/AdS wormholes

Isotropic matter: examples of asympt. de Sitter wormholes
Symmetric and asymmetric wormholes w.r.t. the throat

Anisotropic matter: asympt flat solutions with R = 0.
Symmetric and asymmetric wormholes w.r.t. the throat
Relation to brane worlds.

Mathematical curiosity: intersections of integral curves
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Basic equations. NEC violation 3

The Einstein equations can be written in two equivalent forms

Gν
µ ≡ Rν

µ − 1
2
δνµR = −T ν

µ , or Rν
µ = −(T ν

µ − 1
2
δνµT

α
α ), (1)

T ν
µ = stress-energy tensor (SET) of matter.

Metric : ds2 = A(x)dt2 − dx2

A(x)
− r 2(x)(dθ2.+ sin2 θdϕ2). (2)

The most general SET compatible with (2):

T ν
µ = diag(ρ, −pr , −pT , −pT ), (3)

ρ = energy density, pr = radial pressure, pT = tangential pressure.

Wormhole: r(x) has a regular minimum (say, at x = x0), called a throat, and
reaches values much larger than r(x0) on both sides; A > 0 at least near x0.

The difference
(
t
t

)
−

(
x
x

)
of the Einstein equations reads

2A r ′′/r = −(T t
t − T x

x ) ≡ −(ρ+ pr ), (4)

At a minimum of r(x) we have r ′ = 0, r ′′ > 0. Hence (4) is NEC violation.
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No-go theorem for isotropic matter 4

Three nontrivial components in the Einstein equations:

G t
t = r−2 [−1 + A(2rr ′′ + r ′2) + A′rr ′] = −ρ, (5)

G x
x = r−2 [−1 + A′rr ′ + Ar ′2] = pr , (6)

G θθ = Gφ
φ = r−2 [Ar ′′ + 1

2 rA
′′ + A′r ′] = pT , (7)

If we require pr = pT (isotropic matter), we have
r2A′′ + 2Arr ′′ − 2Ar ′2 + 2 = 0, or, substituting A(x) = D(x)/r2(x),

D ′′ − 4D ′r ′/r + 4Dr ′2/r2 + 2 = 0. (8)

If at some x = x0, D ≥ 0, D ′ = 0, then by (8), D ′′ ≤ −2, so it is a
maximum. However, at a flat asymptotic A→ 1, D ∼ r2 →∞; at an
AdS asymptotic A ∼ r2, D ∼ r4 →∞. If there are two such regions,
there is a minimum of D(x) between them — but it is impossible by (8).

Theorem. A static, spherically symmetric traversable wormhole with
r →∞ and A(x)r2(x)→∞ on both sides of the throat cannot be
supported by any isotropic matter source with pr = pT .
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Isotropic matter: asymptotically dS wormholes 5

No clear reason to assume a particular equation of state
⇒ we instead specify a suitable metric function r(x):

r(x) =
√
a2 + x2, a = const > 0. (9)

For a numerical study, we put a = 1 (the length scale remains arbitrary).
Assuming pr = pT , we use Eq. (8) to find A(x). With (9) it takes the
form

(1 + x2)2A′′ + 2(1− x2)A + 2(1 + x2) = 0. (10)

After solving it (only numerically!), the metric is known completely.
At large x , the solution of (10) is

A(x) = 1 + c1x
2 + c2/x , c1,2 = const.

compatible with both flat and (A)dS behavior.

K. A. Bronnikov, K.A. Baleevskikh, M.V. Skvortsova Wormholes with fluid sources: A no-go theorem and new examples



Isotropic matter: symmetric dS-dS wormholes 6
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Left: Solutions A(x) of Eq. (10) for a symmetric dS–dS wormhole, with
A(0) = 1, 3, 6, 10, 15 (bottom-up along the ordinate axis) and A′(0) = 0.

Right: The metric function A(x) and the SET components for a symmetric
dS–dS wormhole according to Eq. (10) with A(0) = 1 and A′(0) = 0.

A point of interest: all curves A(x) intersect at two symmetric points:
x ≈ ±1.4109, A(x) ≈ −1.4953.

Carter-Penrose diagram of a dS-dS worm-
hole. Lines AA’ and BB’: possible identifi-
cation, it means that the wormhole connects
regions of the same de Sitter universe
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Isotropic matter: asymmetric wormholes 7
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Left: The function A(x) for A(0) = 1 and A′(0) = 0, 1, 2, 3, 4, 5 (written on the
corresponding curves). Two upper curves → AdS as x → +∞.

Right: The function A(x) for the same slope at the throat, A′(0) = 6 and
A(0) = 1, 3, 5, 8, 12 (bottom-up on the ordinate axis and conversely at large
|x |). The curves intersect at the same x as for symmetric models.
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The function A(x) and the SET components
for the solution with A(0) = 8 and A′(0) =
6, having two de Sitter asymptotics.with dif-
ferent curvature values.
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As. flat (M–M) wormholes and regular black holes 8

Now let us abandon the source isotropy assumption and try to obtain
new models of twice asymptotically flat geometries. As before, there is
no clear reason to assume a particular form of the equations of state
(which are now different for pr and pT ). Instead, we again take r(x) in
the form r =

√
1 + x2.

In addition, we assume the Ricci scalar R = 0. Hence it is possible to
interpret the results as vacuum solutions in an Randall-Sundrum-2-like
brane world. For our metric (2) we have

R =
2

r2
− A′′ − 4A′

r ′

r
− 4A

r ′′

r
− 2A

r ′2

r2
. (11)

For our choice of r(x), the equation R = 0 takes the form

A′′ +
4x

1 + x2
A′ +

2(2 + x2)

(1 + x2)2
A =

2

1 + x2
. (12)

At large |x | the asymptotic form of its solution is A = 1 + C1/x + C2/x
2,

C1,2 = const, ⇒ Schwarzschild-like asymptotic flatness.
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M–M wormholes and regular black holes 9
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Symmetric solutions to Eq. (12) with A′(0) = 0 and
A(0) = −0.3, 0, 0.5, 0.75, 1, 2, 4.205, 6 (bottom-up at small x ,
conversely at large |x |).
Left — a general picture,
Right — its part of interest enlarged.
There are wormholes and regular black holes with two or four
horizons.
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Asymmetric wormholes and regular BHs 10
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Asymmetric solutions to Eq. (12).
Left: A(0) = 1 and A′(0) = 0, 1, 1.5, 2, 3 (upside-down for x < 0 and
bottom-up for x > 0).
Right: A(0) = 5 and A′(0) = 0, 0.8, 2 (upside-down for x < 0 and
bottom-up for x > 0). The peaks near x = 0 are similar to the symmetric
case.

The number of horizons if from zero to four.
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Conclusions 11

A no-go theorem showing that it is impossible to obtain static
asymptotically flat or AdS wormholes without horizons, supported by
isotropic matter.

With isotropic matter: a family of wormholes which connect two de
Sitter worlds with the same or different curvature. They can link
distant regions of, e.g., the same inflationary universe making them
causally connected. (Unlike other models where the throat
cosmologically expands, here its radius is constant. )
Also dS-M and dS-AdS configurations — black universes.

With anisotropic matter: new (numerical) asymptotically flat models
of wormholes and regular BHs, both Z2-symmetric and asymmetric,
with up to 4 Killing horizons satisfying R = 0 ⇒ vacuum solutions
in a brane world.

Intersections of integral curves of linear ODE, observed for both
Rx
x = Rθθ and R = 0. A general property of such equations.
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Appendix: Intersections of integral curves 12

Consider a general linear real-valued 2nd order ODE for y(x):

A(x)y ′′ + B(x)y ′ + C(x)y = F (x), (A1)

with the initial conditions y(x0) = a, y ′(x0) = b.

Suppose we know y1(x), y2(x) — linearly independent solutions of the
homogeneous equation, and y3(x) — a special solution to the inhomog. eq.
Then the general solution to (A1) may be written as

y(x , a, b) =
y1(x)

W0
[(a−y30)y ′20 − (b−y ′30)y20]− y2(x)

W0
[(a−y30)y ′10 − (b−y ′30)y10]

+y3(x); W0 =

∣∣∣∣y10 y20
y ′10 y ′20

∣∣∣∣ (A2)

with the constants yi0 = yi (x0), y ′i0 = y ′i (x0), i = 1, 2, 3.

Question: If we fix b=y ′(x0) and vary a=y(x0), will the curves (A2) intersect?
Answer: Yes, at such x = x∗ that ∂y(x , a, b)/∂a = 0 ⇒ the equation

y1(x∗)y
′
20 = y2(x∗)y

′
10. (A3)

It is insensitive to the choice of y1(x) and y2(x), and independent of b and
F (x). It can have any number of solutions, from zero to infinity.
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