

Quarkonia measurements in 5 TeV heavy-ion collisions with the ATLAS detector

Smirnov Nikita, on behalf of the ATLAS collaboration

International conference on particle physics and astrophysics 2017,Moscow,Russia

Why study quarkonia?

- Quarkonia
 - Bound states of quark and anti-quark (*c*,*b*)
 - Strong interaction with matter
 - Sensitive to hot and cold matter effects
 - Two different production mechanisms

Hot Nuclear Matter (Pb+Pb)

- Colour screening
- Regeneration
- Probing b-quark energy loss

Cold Nuclear Matter (p+Pb)

- Modification to nuclear PDFs
- Nuclear absorption
- Parton energy loss
- Gluon saturation

 T/T_c 1/(r) [fm⁻¹]

Y(1S)

χ_b(1P)

ATLAS detector

- Muon reconstruction is done using muons spectrometer, inner detector and trigger system ($|\eta| < 2.4$)
- Forward calorimeters (FCal, $3.1 < |\eta| < 4.9$) are used in centrality determination

Used heavy-ion data:

- 2013 *p*+*Pb* 5.02 TeV, 28 nb⁻¹
- 2015 *Pb*+*Pb* 5.02 TeV, 0.49 nb⁻¹
- 2015 *p*+*p* 5.02 TeV, 25 pb⁻¹

eated by T. Herrmann, O. Jeřábek, K. Jende, M. Kobe

ATLAS quarkonia measurements

Two major quarkonia results

- September 2016 J/ψ and $\psi(2S)$ ATLAS-CONF-2016-109
 - 2015 *Pb*+*Pb* $\sqrt{s_{NN}}$ = 5.02 TeV and 2015 *p*+*p* \sqrt{s} = 5.02 TeV
- September 2017 J/ψ , $\psi(2S)$ and $\Upsilon(nS)$ <u>arXiv:1709.03089</u> (ATLAS paper pre-print)
 - 2013 $p+Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ and 2015 $p+p \sqrt{s} = 5.02 \text{ TeV}$

Charmonium in Pb+Pb

Simultaneous 2D fit

Non-prompt J/ψ fraction

- The fraction of non-prompt J/ψ is similar in trend and magnitude for both p+p and Pb+Pb collisions
- No significant centrality dependence in *Pb+Pb* measurements

 $R_{AA} = \frac{N_{AA}}{\langle T_{AA} \rangle \times \sigma^{pp}}$ $J/\psi R_{AA}$ VS. y

No significant dependence from y

- Similar degree of suppression is observed for both prompt and non-prompt production
- Strong suppression in most central collisions

ATLAS and CMS results

CMS-PAS-HIN-16-025

ATLAS and CMS results

$\psi(2S)$ to J/ψ double ratio

ATLAS and CMS results

• Both experiments are showing consistent with each other results for ratio of excited to ground charmonium states

ATLAS-CONF-2016-109

Phys. Rev. Lett. 118 (2017) 162301

Quarkonium in p+Pb

Fitting model (Y(nS))

 $PDF(m) = N_{\gamma(1S)}f_{\gamma(1S)}(m) + N_{\gamma(2S)}f_{\gamma(2S)}(m) + N_{\gamma(3S)}f_{\gamma(3S)}(m) + N_{bkg}f_{bkg}(m),$

- R_{pPb} of J/ψ is consistent with unity across measured p_T range
- At lower p_T ALICE (inclusive J/ψ) and ATLAS ($\Upsilon(1S)$) are showing light suppression becoming comparable to p+pcollisions at higher p_T arXiv:1709.03089

Double ratio of excited states ($\Upsilon(nS)$)

- Double ratio of bottomonium shows stronger suppression of excited states in *p*+*Pb* compared to *p*+*p* collisions
- Measurements are consistent with CMS results and theoretical prediction
 arXiv:1709.03089

Double ratio of excited states

- Double ratios of excited states are showing growing suppression of excited states with centrality
- $\Upsilon(3S)$ is inconclusive due to statistical uncertainty

arXiv:1709.03089

Comparison to Z boson

Summary

- Measurements of quarkonia production in Pb+Pb and p+Pb collisions are presented
- *Pb*+*Pb* collisions:
 - Prompt and non-prompt charmonia production show different R_{AA} trends as function of p_T
 - Both prompt and non-prompt J/ψ components show similar suppression pattern with collision centrality
 - Prompt $\psi(2S)$ is strongly suppressed with respect to J/ψ , while non-prompt production do not result in such behavior
- *p*+*Pb* collisions:
 - Suppression of J/ψ do not show obvious dependence from p_T and consistent with unity
 - Suppression of $\Upsilon(1S)$ is observed at low p_T range
 - Double ratios show suppression of excited states with respect to ground state and show slight centrality dependence
 - Ratios of quarkonia ground states to Z boson are independent on event activity and scale with the number of binary-collisions
- ATLAS HI public results

ADDITIONAL SLIDES

Analysis methods

- Trigger:
 - p+Pb: 2 muons with $p_T > 2$ GeV, at least one muon at L1 ($p_T > 0$ GeV)
 - Pb+Pb: 2 muons with $p_T > 4$ GeV, at least one muon at L1 ($p_T > 4$ GeV)
- Kinematic range:
 - p+Pb: 8.5 < $p_T^{\mu\mu}$ < 30 GeV, $-2 < y^* < 1.5$
 - p+Pb (Y(*nS*)): $0 < p_T^{\mu\mu} < 30$ GeV, $-2 < y^* < 1.5$
 - Pb+Pb: $9 < p_T^{\mu\mu} < 40$ GeV, |y| < 2
- Weighted yields from two-dimensional unbinned maximum likelihood fits in $m_{\mu\mu}$ and pseudo-proper decay time $\tau = \frac{L_{xy}m_{\mu\mu}}{n_{-}^{\mu\mu}}$
- Weighted unbinned 1D maximum likelihood fit for bottomonium
- Separate yields from two production mechanisms:
 - Prompt direct production and feed-down
 - Non-prompt from B-hadrons decays

Definition of y*

p+Pb

$$y^* = -(y_{lab} + 0.465)$$
 Run period A

 $y^* = y_{lab} - 0.465$
 Run period B

y* defined as positive in the proton beam direction

Nuclear modification of different probes

Pb+Pb systematic uncertainties summary

Source	J/ψ Pb+Pb yield	J/ψ pp cross section	$R_{\rm AA}^{J/\psi}$	$R_{\rm AA}^{\psi(2{\rm S})}/R_{\rm AA}^{\psi}$
Trigger	11 - 18 %	5 %	12 - 19 %	3 %
Reconstruction	13 - 27 %	6 %	14 - 28 %	6 %
Migration	< 2 %	-	< 2 %	—
Fitting	2 %	1 %	2 %	8 %

Table 3: Systematic uncertainties of the J/ψ yield determination and $\psi(2S)/J/\psi$ ratio measured in Pb+Pb collisions.

Centrality in Pb+Pb

Centrality [%]	$\langle T_{\rm AA} \rangle [{\rm mb}^{-1}]$	$\langle N_{\rm part} \rangle$
0-10	23.35 ± 0.20	358.8 ± 2.2
10-20	14.33 ± 0.17	264.0 ± 2.8
20-30	8.63 ± 0.17	189.1 ± 2.7
30-40	4.94 ± 0.15	131.4 ± 2.5
40-50	2.63 ± 0.11	86.9 ± 2.3
50-60	1.27 ± 0.07	53.9 ± 1.9
60-70	0.56 ± 0.04	30.5 ± 1.5
70-80	0.22 ± 0.02	15.3 ± 1.0

Table 1: The $\langle T_{AA} \rangle$ and $\langle N_{part} \rangle$ values and their uncertainties in each centrality bin.

Centrality

Glauber model

Generate two colliding nuclei
with 3D nucleon positions chosen
from measured density

distributions (e^{-} scattering)

$$\rho(r) = \frac{\rho_0}{1 + \exp([r - R]/a)}$$

2) Nucleons interact when transverse distance satisfies

$$d < \sqrt{\sigma_{NN} \, / \, \pi}$$

typically using he inelastic pp cross section for NN

Centrality

