

A review of the theoretical heavy-ion physics (highlights)

Elena Bratkovskaya

(GSI Darmstadt & Uni. Frankfurt)

The 3rd International Conference on Particle Physics and Astrophysics (ICPPA-2017) MEPhI, Moscow, 2-6 October 2017

The ,holy grail' of heavy-ion physics:

2

Theory: Information from lattice QCD

□ Scalar quark condensate $\langle q \overline{q} \rangle$ is viewed as an order parameter for the restoration of chiral symmetry: $\langle \overline{q}q \rangle = \begin{cases} \neq 0 & \text{chiral non-symmetric phase;} \\ = 0 & \text{chiral symmetric phase.} \end{cases}$

 \rightarrow both transitions occur at about the same temperature T_c for low chemical potentials

Degrees-of-freedom of QGP

- weakly interacting system
- massless quarks and gluons

- Thermal QCD
- = QCD at high parton densities:
- strongly interacting system
- massive quarks and gluons
- ➔ quasiparticles
- = effective degrees-of-freedom

✤ How to learn about degrees-of-freedom of QGP ? → HIC experiments

Experiment: Heavy-ion collisions

Heavy-ion collision experiment

→ ,re-creation' of the Big Bang conditions in laboratory: matter at high pressure and temperature

□ Heavy-ion accelerators:

Large Hadron Collider -LHC (CERN): Pb+Pb up to 574 A TeV

- Relativistic-Heavy-Ion-Collider -RHIC (Brookhaven): Au+Au up to 21.3 A TeV
- Facility for Antiproton and Ion Research – FAIR (Darmstadt) (Under construction) Au+Au up to 10 (30) A GeV

Nuclotron-based Ion Collider fAcility – NICA (Dubna) (Under construction) Au+Au up to 60 A GeV

Signals of the phase transition:

- Multi-strange particle enhancement in A+A
- Charm suppression
- Collective flow (v₁, v₂)
- Thermal dileptons
- Jet quenching and angular correlations
- High p_T suppression of hadrons
- Nonstatistical event by event fluctuations and correlations

Experiment: measures final hadrons and leptons

How to learn about physics from data?

Compare with theory!

Statistical models:

basic assumption: system is described by a (grand) canonical ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium = thermal hadron gas at freeze-out with common T and μ_B

[-: no dynamical information]

• Hydrodynamical models:

basic assumption: conservation laws + equation of state (EoS);

assumption of local thermal and chemical equilibrium

- Interactions are ,hidden' in properties of the fluid described by transport coefficients (shear and bulk viscosity η , ζ , ..), which is 'input' for the hydro models

[-: simplified dynamics]

• Microscopic transport models:

based on transport theory of relativistic quantum many-body systems

- Explicitly account for the interactions of all degrees of freedom (hadrons and partons) in terms of cross sections and potentials
- Provide a unique dynamical description of strongly interaction matter in- and out-off equilibrium:
- In-equilibrium: transport coefficients are calculated in a box controled by IQCD
- Nonequilibrium dynamics controled by HIC

Actual solutions: Monte Carlo simulations

Results from statistical models for HIC

J. Stachel at al., J.Phys. Conf. Ser. 509 (2014) 012019

Good description of the hadron abundances by the thermal hadron gas model → The hadron abundances are in rough agreement with a thermally equilibrated system !

Partial thermal and chemical equilibration is approximately reached in central heavy-ion collisions at relativistic energies!

! Statistical models do not provide an answer to the origin of thermalization. HIC dynamics and the approach to thermal equilibrium is driven by the interactions !

➔ dynamical models of HIC

Dynamical models for HIC

PHSD is a non-equilibrium transport approach with

- explicit phase transition from hadronic to partonic degrees of freedom
- IQCD EoS for the partonic phase (,crossover' at low μ_{α})
- explicit parton-parton interactions between quarks and gluons
- dynamical hadronization

QGP phase is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD A. Peshier, W. Cassing, PRL 94 (2005) 172301;

strongly interacting quasi-particles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential

Spectral functions:

 $\rho_i(\omega,T) = \frac{4\omega\Gamma_i(T)}{\left(\omega^2 - \vec{p}^2 - M_i^2(T)\right)^2 + 4\omega^2\Gamma_i^2(T)}$

W. Cassing, NPA 791 (2007) 365: NPA 793 (2007)

□ **Transport theory**: generalized off-shell transport equations based on the 1st order gradient expansion of Kadanoff-Baym equations (applicable for strongly interacting systems!)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

Thermodynamic and transport properties of the sQGP in equilibrium at finite temperature and chemical potential

Compilation of the ratio of shear viscosity to entropy density for various substances

R. A. Lacey and A. Taranenko, PoS C FRNC2006, 021 (2006)

PHSD in a box: V. Ozvenchuk et al., PRC 87 (2013) 064903 Hydro: Bayesian analysis, S. Bass et al., 1704.07671

 QGP : close to an ideal liquid, not a gas of weakly interacting quarks and gluons
QCD: attempty interacting metter

→ QGP: strongly-interacting matter

Transport properties at finite T, μ_q =0: Electric conductivity σ_e/T

 $\sigma_0 \rightarrow$ Probe of electric properties of the QGP

PHSD in a box:

W. Cassing et al., PRL 110(2013)182301

Review: H. Berrehrah et al. Int.J.Mod.Phys. E25 (2016) 1642003

Constraints on thermal properties of the QGP (transport coefficients) from exp. observables in high energy heavy-ion collisions Hydro model: Bayesian analysis

Hydro model: Bayesian analysis

Extraction of QGP properties via a Model-to-Data Analysis

Hydro model: Bayesian analysis

Traces of the QGP in observables in high energy heavy-ion collisions

Signals for the phase transition (2000)

Hadron-string transport models (HSD, UrQMD) versus observables at ~ 2000

Status at 2000:

Exp. data are not reproduced in terms of the hadron-string picture → evidence for partonic degrees of freedom + ?!

2000→2017: development of microscopic transport models with phase transition from hadronic matter to QGP (PHSD, AMPT, HybridUrQMD,...)

Time evolution of the partonic energy fraction vs energy

□ Strong increase of partonic phase with energy from AGS to RHIC

SPS: Pb+Pb, 160 A GeV: only about 40% of the converted energy goes to partons; the rest is contained in the large hadronic corona and leading partons
RHIC: Au+Au, 21.3 A TeV: up to 90% - QGP

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 V. Konchakovski et al., Phys. Rev. C 85 (2012) 011902

Central Pb + Pb at SPS energies

Central Au+Au at RHIC

■ PHSD gives harder m_T spectra and works better than HSD (wo QGP) at high energies

– RHIC, SPS (and top FAIR, NICA)

□ however, at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases due to the decrease of the partonic fraction

W. Cassing & E. Bratkovskaya, NPA 831 (2009) 215 E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162 PHSD: even when considering the creation of a QGP phase, the K⁺/ π ⁺ ,horn⁺ seen experimentally by NA49 and STAR at a bombarding energy ~30 A GeV (FAIR/NICA energies!) remains unexplained !

→ The origin of 'horn' is not traced back to deconfinement ?!

Can it be related to chiral symmetry restoration in the hadronic phase?!

W. Cassing, A. Palmese, P. Moreau, E.L. Bratkovskaya, PRC 93, 014902 (2016)

Chiral symmetry restoration vs. deconfinement

□ Chiral symmetry restoration via Schwinger mechanism (and non-linear $\sigma - \omega$ model) changes the "flavour chemistry" in string fragmentation (1PI): $\langle q\bar{q} \rangle / \langle q\bar{q} \rangle_V \rightarrow 0 \rightarrow m_s^* \rightarrow m_s^0 \rightarrow s/u \text{ grows}$

→ the strangeness production probability increases with the local energy density ε (up to ε_c) due to the partial chiral symmetry restoration!

Excitation function of hadron ratios and yields

- □ Influence of EoS: NL1 vs NL3 → low sensitivity to the nuclear EoS
- □ Excitation function of the hyperons $\Lambda + \Sigma^0$ and Ξ^- show analogous peaks as K⁺/ π^+ , ($\Lambda + \Sigma^0$)/ π ratios due to CSR

Chiral symmetry restoration leads to the **enhancement of strangeness production** in string fragmentation in the beginning of HIC in the hadronic phase

A. Palmese et al., PRC94 (2016) 044912 , arXiv:1607.04073

Anisotropy coefficients v_n

Non central Au+Au collisions :

□ interaction between constituents leads to a pressure gradient \rightarrow spatial asymmetry is converted to an asymmetry in momentum space \rightarrow collective flow

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$
$$v_n = \left\langle\cos n\left(\varphi - \psi_n\right)\right\rangle, \quad n = 1, 2, 3..,$$

v_1 : directed flow v_2 : elliptic flow

 v_3 : triangular flow

 $v_2 = 7\%, v_1 = 0$

 $v_2 = -7\%, v_1 = 0$

 $v_2 = 7\%, v_1 = -7\%$

Х

 $v_2 > 0$ indicates in-plane emission of particles $v_2 < 0$ corresponds to a squeeze-out perpendicular to the reaction plane (out-of-plane emission)

Hydrodynamic models: elliptic flow v₂

Comparison between hydro simulations and experimental data for the elliptic flow

Ideal hydro: reproduces exp. data at low p_T , overestimates v_2 at $p_T > 1.2$ GeV/c

→ Viscosity of QGP has to be accounted for → viscous hydro

Elliptic flow v_2 is sensitive to η/s

Transport model AMPT: elliptic flow v₂

AMPT: Lin, Pal, Zhang, Li, Ko, PRC 61 (2000) 067901; PRC72 (2005) 064901

AMPT model:

- Initial conditions: HIJING (soft strings and hard minijets)
- QGP creation via string melting
- QGP interaction pQCD based cascade ZPC with massless q, g with constant cross sections σ =3,6,10 mb
- hadronization: coalescence
- hadronic scattering: ART

■ v_2 data can be reproduced only within the string melting scenario and strong partonic interactions σ ~10 mb!

➔ interactions in the QGP phase are mandatory !

V. Konchakovski, E. Bratkovskaya, W. Cassing, V. Toneev, V. Voronyuk, Phys. Rev. C 85 (2012) 011902

V_n (n=2,3,4,5) of charged particles from PHSD at LHC

v₂ increases with decreasing centrality

PRL 107 (2011) 032301 lines – PHSD (e-by-e)

v_n (n=3,4,5) show weak centrality dependence

 v_n (n=3,4,5) develops by interaction in the QGP and in the final hadronic phase

V. Konchakovski, W. Cassing, V. Toneev, J. Phys. G: Nucl. Part. Phys 42 (2015) 055106

Flow at partonic level

Idea of flow per constituent - Coalescence/Recombination Elliptic flow developed at partonic level

STAR

Cf. R. A. Lacey and A. Taranenko, PoS C FRNC2006, 021 (2006)

Transport results - PHSD: Elliptic flow scaling at RHIC

PHSD: The scaling of v₂ with the number of constituent quarks n_q is roughly in line with the data

Collectivity in QGP:
all hadrons flow with about the same velocity!

E. Bratkovskaya, W. Cassing, V. Konchakovski, O. Linnyk, NPA856 (2011) 162

Messages from the study of spectra and collective flow

 \Box m_T spectra are harder with QGP interaction than without at high energies – LHC, RHIC, SPS

□ at RHIC and LHC the QGP dominates the early-stage dynamics

□ at low SPS (and low FAIR, NICA) energies the effect of the partonic phase decreases (influence of the finite quark chemical potential μ_q ?!)

Anisotropy coefficients v_n as a signal of the QGP:

quark number scaling of v₂ at ultrarelativistic energies – signal of deconfinement

growing of v₂ with energy – partonic interactions generate a larger pressure than the hadronic interactions

v_n, n=3,.. – sensitive to QGP

Theory versus experimental observables:

□ indication for a partial chiral symmetry restoration

evidence for strong partonic interactions in the early phase of relativistic heavy-ion reactions

