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THE STANDARD MODEL: THE STATUS REPORT AND OPEN QUESTIONS

THE PRINCIPLES
Three gauged symmetries SU(3)xSU(2)xU(1) 
Three families of quarks and leptons  (3x2, 3x1, 1x2, 1x1) 
 Brout-Englert-Higgs mechanism of spontaneous EW symmetry 
breaking -> Higgs boson 
 CKM and PMNS mixing of flavours 
 CP violation via phase factors 
 Confinement of quarks and gluons inside hadrons 
 Baryon and lepton number conservation 
 CPT invariance -> existence of antimatter

The ST principles allow: 
Extra families of quarks and leptons  
Presence or absence of right-handed neutrino 
Majorana or Dirac nature of neutrino 
Extra Higgs bosons
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THE STANDARD MODEL: THE STATUS REPORT AND OPEN QUESTIONS

THE LAGRANGIAN

possible  right handed neutrino ?
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THE PROBLEMS
 The running couplings possess the Landau ghost poles at high energies

• The ghost pole exist for the U(1) 
coupling and for the  Higgs coupling,  
but … beyond the Planck scale
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 Quantum corrections can make the vacuum unstable 

the situation crucially depends on the 
top and Higgs mass values and requires 
severe fine-tuning and accuracy
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt and ↵s by ±3�.

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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THE PROBLEMS
 The running couplings possess the Landau ghost poles at high energies

• The ghost pole exist for the U(1) 
coupling and for the  Higgs coupling,  
but … beyond the Planck scale

• The situation may change in GUTs due 
to new heavy fields @ the GUT scale

• requires modification of the ST at 
VERY high energies
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 Quantum corrections can make the vacuum unstable 

the situation crucially depends on the 
top and Higgs mass values and requires 
severe fine-tuning and accuracy
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THE STANDARD MODEL: THE STATUS REPORT AND OPEN QUESTIONS

THE PROBLEMS
 New physics at high scale  may destroy the EW scale of the SM

• Quantum corrections to the Higgs potential due to New physics 

• The way out might be the  new physics  at higher scale

• requires modification of the SM 

• The Higgs sector is not protected by any symmetry

• creates the hierarchy problem
mH

mGUT
⇠ 10�14

• This does not happen with the gauge bosons or fermions. Their masses 
are protected by gauge invariance and chiral nature of the EW  sector

• This is not the problem of the SM itself (quadratic divergences are absorbed into the 
unobservable bare mass). 

• This creates power law dependence of the low energy physics on unknown high energy 
physics that is not acceptable
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THE STANDARD MODEL: THE STATUS REPORT AND OPEN QUESTIONS

 why the SU(3)xSU(2)xU(1) ? 
 why 3 generations ? 
 why quark-lepton symmetry? 
 why V-A weak interaction?  
 why L-R asymmetry? 
 why B & L conservation? 
 etc

Why’s?

 how confinement actually works ? 
 how the quark-hadron phase transition 
happens? 
 how neutrinos get a mass? 
 how CP violation occurs in the Universe?  
 how to protect the SM from would be 
heavy scale  physics?

How’s?

Is it self consistent ? 
 Does it describe all experimental data? 
 Are there any indications for physics beyond the SM? 
 Is there another scale except for EW and Planck? 
 Is it compatible with Cosmology? Where is dark matter?

THE OPEN QUESTIONS
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A light boson, could in principle rule its self-interaction and the Yukawa interactions 

with fermions in such a way that the theory could remain weakly coupled up to the 

Planck scale without any dynamics appearing beyond the EWK scale. 


This would be in itself an outstanding discovery: for the first time we would 
have seen a phenomenon that could be described by the same theory over 15 
orders of magnitude in energy. 


A 125GeV boson is a very special object 

EW

Planck

IS THERE ANOTHER SCALE EXCEPT FOR EW AND PLANK? 
POSSIBLE PHYSICS BEYOND THE STANDARD MODEL 7
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Fabio Zwirner, EPS HEP 2017

We live in data driven era and need an 
experimental hint to proceed 
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THE WAYS BEYOND

 New paradigm beyond local QFT: string theory,  brane world, etc 
  -> main task is unification with gravity and construction of quantum gravity
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GUT

• Unification of strong, weak and electromagnetic interactions 
within Grand Unified Theories is a new step in unification of all 
forces of Nature 

• Creation of a unified theory of everything based on string 
paradigm seems to be possibleD=10

10     cm
-34

11THE UNIFICATION PARADIGM 
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Poincare Algebra

[Pµ, P⌫ ] = 0,
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12



POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

NEW SYMMETRIES SUPERSYMMETRY
Supersymmetry is an extension of the Poincare symmetry of the SM

Poincare Algebra

[Pµ, P⌫ ] = 0,
[Pµ,M⇢�] = i(gµ⇢P� � gµ�P⇢),
[Mµ⌫ ,M⇢�] = i(g⌫⇢Mµ� � g⌫�Mµ⇢ � gµ⇢M⌫� + gµ�M⌫⇢)

Super Poincare Algebra

[Qi
↵, Pµ] = [Q̄i

↵̇, Pµ] = 0,

[Qi
↵,Mµ⌫ ] =

1
2 (�µ⌫)�↵Q

i
� , [Q̄i

↵̇,Mµ⌫ ] = � 1
2 Q̄

i
�̇
(�̄µ⌫)

�̇
↵̇,

{Qi
↵, Q̄

j

�̇
} = 2�ij(�µ)↵�̇Pµ,

{Qi
↵, Q

j
�} = 2✏↵�Zij , Zij = Z+

ij ,

{Q̄i
↵̇, Q̄

j

�̇
} = �2✏↵̇�̇Z

ij , [Zij , anything] = 0,

↵, ↵̇ = 1, 2 i, j = 1, 2, . . . , N.

Qi, Q̄i

12



POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

NEW SYMMETRIES SUPERSYMMETRY
Supersymmetry is an extension of the Poincare symmetry of the SM

Poincare Algebra

[Pµ, P⌫ ] = 0,
[Pµ,M⇢�] = i(gµ⇢P� � gµ�P⇢),
[Mµ⌫ ,M⇢�] = i(g⌫⇢Mµ� � g⌫�Mµ⇢ � gµ⇢M⌫� + gµ�M⌫⇢)

Super Poincare Algebra

[Qi
↵, Pµ] = [Q̄i

↵̇, Pµ] = 0,

[Qi
↵,Mµ⌫ ] =

1
2 (�µ⌫)�↵Q

i
� , [Q̄i

↵̇,Mµ⌫ ] = � 1
2 Q̄

i
�̇
(�̄µ⌫)

�̇
↵̇,

{Qi
↵, Q̄

j

�̇
} = 2�ij(�µ)↵�̇Pµ,

{Qi
↵, Q

j
�} = 2✏↵�Zij , Zij = Z+

ij ,

{Q̄i
↵̇, Q̄

j

�̇
} = �2✏↵̇�̇Z

ij , [Zij , anything] = 0,

↵, ↵̇ = 1, 2 i, j = 1, 2, . . . , N.

Qi, Q̄i

12



POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

NEW SYMMETRIES SUPERSYMMETRY
Supersymmetry is a dream of a unified theory of all particles and interactions

  Supersymmetry remains, to this date, a well-motivated, much anticipated extension 
to the Standard Model of particle physics 

  ◆  Advent of the LHC: huge new ground within reach  
◆  A search is defined by its signature and by its background  estimation method.

  ◆  If SUSY is the answer to the “naturalness” problem, then there must exist light 
colored particles 

  ◆  This is a crucial moment: either we find SUSY at the LHC eventually or we have 
to solve the hierarchy problem some other way! (which way?)



Bosons and Fermions come in pairs
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R-PARITY

The consequences:
• The superpartners are created in pairs
• The lightest superparticle is stable

  p
!

  p
!

• The lightest superparticle (LSP)
   should be neutral - the best candidate
   is neutralino  (photino or higgsino)
• It can survive from the Big Bang  and
   form the Dark matter  in the Universe 

B - Baryon Number 
L - Lepton Number 
S - Spin

The Usual Particle :  R = + 1 
SUSY Particle :        R =  - 1

15THE R-PARITY
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NMSSM=MSSM+Singlet 3 light Higgses around 125 GeV 
Heavy Higgs decay H->h1h2
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POSSIBLE PHYSICS BEYOND THE STANDARD MODEL

NEW SYMMETRIES  EXTRA U(1)’, SU(2)’

■ Appear in some GUT models 
■ Inspired by string models 

Mixture of a usual EM U(1) 
photon and a new U(1)’ one

L ⇠ Fµ⌫F
0µ⌫

Used as possible BSM signal with 
energetic single jet or diet events                                

Used as possible Dark matter 
candidate   - Dark photon                             

Dedicated experiment to 
look for conversion of a 
usual photon into a dark one

21



No indication so far - experimental limits on Z’ and W’ masses around few TeV                           

22

• Search for Z’ (Di-muon events) 
• Search for W’ (single muon/ jets) 
• Search for resonance decaying to t-tbar 
• Search for diboson resonances 
• Monojets + invisible

Experiment

ADDITIONAL GAUGE BOSONS
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Is it the SM Higgs boson or not?
What are the alternatives?

A. Singlet extension  
B. Higgs doublet extension 
C. Higgs triplet extension

• The Higgs physics has already started 
• This is the  task of vital importance.  
• May require the electron-positron collider

The mass spectrum of the 
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Heavy Higgs!ττ 
•  In 2HDMs a heavy Higgs boson can have enhanced couplings to down-

type fermions 
–  Increased heavy Higgs production decaying mainly to b quarks and τ leptons 

•  New ATLAS analysis includes new triggers and event categories 
–  Combine all categories but separate limits for production mechanism 

Florencia Canelli - University of Zurich 35 

ATLAS-CONF-2016-041 

Higgs!hh!bbττ 
•  Resonance search 

–  generally one h(125)!bb [BR=58%]  
–  resonance searches benchmark models: spin-0 (radion) and spin-2 (G) 

•  Non-resonance search 
–  BSM can be enhanced by resonance or particle in the loop and can be modeled 

in EFT adding dim-6 operators to the SM Lagrangian 
•  can be described with 5 parameters: λhhh, yt, c2, c2g, cg 

Florencia Canelli - University of Zurich 36 

CMS-PAS-HIG-16-029 

CMS-PAS-HIG-16-028 

Higgs!hh!bbττ 
•  Resonant search 

–  Fit to the invariant mass of ττ and bb 
–  At high mH�boosted regime, uses substructure information for jets, b-tag 

•  Non-resonant search 
–  Limits as a function of the ratio of the anomalous trilinear coupling to the SM 

trilinear coupling (κλ=λhhh/λSM
hhh)  

–  At κλ=1 value corresponds to ~200 (170) x SM prediction 

Florencia Canelli - University of Zurich 37 

CMS-PAS-HIG-16-029 
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Charged Higgs bosons appear in many extensions of the SM 

q q

W±

q q

Z
H±

W±

Z

Search for H±!τν 
200<mH

±<2000 GeV 

Search for H±!tb 
300<mH

±<1000 GeV 

Search for H±WZ  

CMS-PAS-HIG-16-025 

ATLAS-CONF-2016-089 

ATLAS-CONF-2016-088 

 [GeV]±Hm
200 400 600 800 1000

Z)
 [f

b]
±

 W
→ 

±
 B

R(
H

× 
σ

200

400

600

800

1000

1200

1400

1600

1800
PreliminaryCMS  (13 TeV)-115.2 fb

Observed
Expected

σ 1±
σ 2±

Charged Higgs 

Florencia Canelli - University of Zurich 39 

Charged Higgs bosons appear in many extensions of the SM 

q q

W±

q q

Z
H±

W±

Z

Search for H±!τν 
200<mH

±<2000 GeV 

Search for H±!tb 
300<mH

±<1000 GeV 

Search for H±WZ  

CMS-PAS-HIG-16-025 

ATLAS-CONF-2016-089 

ATLAS-CONF-2016-088 

Higgs!hh!bbττ 
•  Resonant search 

–  Fit to the invariant mass of ττ and bb 
–  At high mH�boosted regime, uses substructure information for jets, b-tag 

•  Non-resonant search 
–  Limits as a function of the ratio of the anomalous trilinear coupling to the SM 

trilinear coupling (κλ=λhhh/λSM
hhh)  

–  At κλ=1 value corresponds to ~200 (170) x SM prediction 

Florencia Canelli - University of Zurich 37 

CMS-PAS-HIG-16-029 

 [GeV]Hm
300 400 500 600 700 800 900

) [
pb

]
ττ

 b
b

→
 h

h
→

 B
R(

H
×

σ
95

%
 C

L 
on

 

3−10

2−10

1−10

1

10

210

Observed
Expected CLs

σ 1±Expected 
σ 2±Expected 

CMS
preliminary

 (13 TeV)-112.9 fb

hτhτ + bb hτ + bb e
h
τµbb 

Combined channels

CMS-PAS-HIG-16-028 

λk
20− 10− 0 10 20 30

) [
fb

]
ττ

 b
b

→
 B

R(
hh

×
σ

95
%

 C
L 

on
 

1

10

210

310

410

510

Observed
Expected CLs

σ 1±Expected 
σ 2±Expected 

Theory prediction

CMS
preliminary

 (13 TeV)-112.9 fb

hτhτ + bb hτ + bb e
h
τµbb 

Combined channels

200 x SM 

Resonant Non-Resonant 

Heavy Higgs!ττ 
•  In 2HDMs a heavy Higgs boson can have enhanced couplings to down-

type fermions 
–  Increased heavy Higgs production decaying mainly to b quarks and τ leptons 

•  New ATLAS analysis includes new triggers and event categories 
–  Combine all categories but separate limits for production mechanism 

Florencia Canelli - University of Zurich 35 

ATLAS-CONF-2016-041 

 [GeV]±Hm
200 400 600 800 1000

Z)
 [f

b]
±

 W
→ 

±
 B

R(
H

× 
σ

200

400

600

800

1000

1200

1400

1600

1800
PreliminaryCMS  (13 TeV)-115.2 fb

Observed
Expected

σ 1±
σ 2±

Charged Higgs 

Florencia Canelli - University of Zurich 39 

Charged Higgs bosons appear in many extensions of the SM 

q q

W±

q q

Z
H±

W±

Z

Search for H±!τν 
200<mH

±<2000 GeV 

Search for H±!tb 
300<mH

±<1000 GeV 

Search for H±WZ  

CMS-PAS-HIG-16-025 

ATLAS-CONF-2016-089 

ATLAS-CONF-2016-088 

Heavy Higgs!ZZ!4l 
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PECCEI-QUINN MECHANISM - AXION
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32STERILE NEUTRINO
Various exps interpreted  within 4 neutrino 

framework

Oscillation channels are related:

P⌫e!⌫e ⇡ 1� 2|Ue4|2(1� |Ue4|2)
P⌫µ!⌫µ ⇡ 1� 2|Uµ4|2(1� |Uµ4|2)
P⌫µ!⌫e ⇡ 2|Ue4|2|Uµ4|2

4⇡E/�m2
41 << L << 4⇡E/�m2

31for



POSSIBLE PHYSICS BEYOND THE STANDARD MODEL 33

DARK MATTERNEW  PARTICLES 

LZ’s Reach
V Turning on by 2020 with 

1,000 initial live-days plan

V 10 tons total, 7 tons active, 
~5.6 ton fiducial mass
U Due to unique triple veto

V GOALS: < 3 x 10-48 cm2, at 
40 GeV. Clip n shoulder

6 keVnr threshold with 
at least 99.5% 
discrimination

27

(latest)

*plot and models from LZ’s Conceptual Design Report, arXiv:1509.02910

The Dark Matter is made of: 
■ Macro objects – Not seen 
■ New particles – right heavy neutrino  
                       - axion (axino) 
                       - neutralino 
                       - sneutrino 
                       - gravitino 
                       - heavy photon 
                       - heavy pseudo-goldstone 
                       - light sterile higgs

Not from  
  the SM

might be invisible (?)

detectable in 3 spheres
less theory favorable
might be undetectable (?)

possible, but not 
related to the other 
models

Future DM searchers
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NEW  DIMENSIONS

34

Motivations 
1. String theory 
2. Interesting possibility that opens wide opportunities

• String theory suffers conformal anomalies that make it inconsistent.  
• Conformal anomaly cancels at D=26 for a bosonic string and D=10 for a fermionic string 

 EXTRA SPACE DIM
1 + 3 ! 1 + n, n > 3
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Accelerator signatures
• Gravitational radiation in the bulk => 

missing energy  
Present LHC bounds                  TeV 
• Massive string vibrations => 

resonances in dijet distribution 

• Higher spin excitations of quarks and 
gluons with strong interaction 

present LHC limits               TeV 
• Large TeV dimensions => KK 

resonances of SM gauge bosons 

experimental limits 
                               TeV

M⇤ � 3� 5

M2
j = M2

0 +M2
s j

Ms � 5

Mk = M2
0 + r2/R2, k = 1, 2, ...

R�1 � 0.5� 4
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✴ There are five types of string theories (IIA, IIB, I, two Heterotic)
✴  All five string theories are only consistent in 10 space-time dimensions
✴ All five string theories have world-sheet supersymmetry and lead to space-time-
supersymmetry in 10 dimensions
✴ All five string theories are related and part of a single ‘’theory’’: M-theory

d=11 
SUGRA

IIAIIB IHeterotic 
I

Heterotic 
II

ST

S1 S1/Z2

T

M

M-theory is a patchwork of the constituent theories plus many “rules”.

NEW  PARADIGM STRING THEORY

POSSIBLE PHYSICS BEYOND THE STANDARD MODEL



Higgs from untwisted sector => gauge-Higgs unification

λtop = gGUT => mtop ∼ IR fixed point ≃ 170 GeV

Yukawa couplings: hierarchies à le Froggatt-Nielsen

discrete symmetries => couplings allowed with powers of a singlet field

λn ∼ Φn ⟨Φ⟩ ∼ 0.1Ms → hierarchies

A single anomalous U(1) => ⟨Φ⟩ ≠ 0 to cancel the FI D-term

D-term is shifted to D+ TrQ
192π2 g

2
H [65]

R-neutrinos: natural framework for see-saw mechanism

⟨h⟩νLνR +MνRνR ⟨h⟩ = v << M => mR ∼ M ; mL ∼ v2/M

proton decay: problematic dim-5 operators

in general need suppression higher than Ms or small couplings

SUSY/ in a hidden sector from the other E8 → gravity mediation
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discrete symmetries => couplings allowed with powers of a singlet field

λn ∼ Φn ⟨Φ⟩ ∼ 0.1Ms → hierarchies

A single anomalous U(1) => ⟨Φ⟩ ≠ 0 to cancel the FI D-term

D-term is shifted to D+ TrQ
192π2 g

2
H [65]

R-neutrinos: natural framework for see-saw mechanism

⟨h⟩νLνR +MνRνR ⟨h⟩ = v << M => mR ∼ M ; mL ∼ v2/M

proton decay: problematic dim-5 operators

in general need suppression higher than Ms or small couplings

SUSY/ in a hidden sector from the other E8 → gravity mediation

I. Antoniadis (Corfu Summer School 2014) Extra dimensions 36 / 76

Higgs from untwisted sector => gauge-Higgs unification

λtop = gGUT => mtop ∼ IR fixed point ≃ 170 GeV

Yukawa couplings: hierarchies à le Froggatt-Nielsen
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Q:  Do we really live on a brane? 
A: We have to check it
Q: Do we have good reasons to 
believe in it?
A: No, but it is appealing
Q: Why D>4?
A: String theory loves it
Q: Is it what we believe in?
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Q:  Do we really live on a brane? 
A: We have to check it
Q: Do we have good reasons to 
believe in it?
A: No, but it is appealing
Q: Why D>4?
A: String theory loves it
Q: Is it what we believe in?
A: We believe in BIG deal

POSSIBLE PHYSICS BEYOND THE STANDARD MODEL
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Target #1: Higgs sector

Target #2: Dark Matter

 Target #3: Neutrino sector

Target #4: New physics (supersymmetry) 

Future development of HEP crucially depends on LHC outcome 

Complimentary searches for dark matter and insights in neutrino 
physics are of extreme importance

The areas that were left behind come to the front:            
confinement, exotic hadrons, dense hadron matter
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