Lepton Number Violation in b-hadrons decays at the LHC

José Ruiz

October 4, 2017

Outline

Conclusions, perspectives

Sensitivity at LHC

Introduction

Questions pending:

- Sterile neutrinos?
- ② Dirac or Majorana?
- How many?

Dirac or Majorana? Lepton number is not conserved if Majorana neutrinos \rightarrow Typically tested via $0\nu\beta\beta$ decay

The presentation is based on works

https://arxiv.org/abs/1708.01516 https://arxiv.org/abs/1705.10606

Theoretical approach

Simplified approach with:

- One Majorana heavy neutrino N
- Mixing only to muons
- 3 Mixing $V_{\mu N}$
- Neutrino mass m_N
- Few GeV mass as a benchmark

We consider two production processes where the CMS and LHCb experiments could have sensitivity

We consider the following

 $\Delta L = 2$ decay channels

 $B_s \to D_s^- \pi^- \mu^+ \mu^+$

Sensitivity with the LHCb experiment

Expected number of events at LHCb:

$$N_{\exp}^{\text{LHCb}} = \sigma(pp \to H_b X)_{\text{acc}} f(b \to \Lambda_b(B_s)) \text{BR}(\Lambda_b(B_s) \to \Delta L = 2)$$
$$\times \epsilon_D^{\text{LHCb}}(\Lambda_b(B_s) \to \Delta L = 2) P_N^{\text{LHCb}} \mathcal{L}_{\text{int}}^{\text{LHCb}}$$

 $\sigma(pp \rightarrow H_bX)_{acc}$: production cross-section $f(b \rightarrow \Lambda_b(B_s))$: hadronization factor of a *b*-quark to $\Lambda_b(B_s)$ baryon(meson)

 \mathcal{L}_{int}^{LHCb} : integrated luminosity

 $BR(\Lambda_b(B_s) \rightarrow \Delta L = 2)$: branching fraction of the LNV process P_N^{LHCb} : Majorana neutrino acceptance factor

 $\epsilon_D^{LHCb}(\Lambda_b(B_s) \rightarrow \Delta L = 2)$: detection/reconstruction efficiency

Derived from measurement: $\sigma(pp \to H_bX)_{acc} = (75.3 \pm 5.4 \pm 13.0)\mu b$, $f(b \to \Lambda_b(B_s)) = 0.053 \pm 0.017(0.103 \pm 0.005)$, $\epsilon_D^{\text{LHCb}}(\Lambda_b(B_s) \to \Delta L = 2)$ Free parameters: BR($\Lambda_b(B_s) \to \Delta L = 2$), heavy neutrino lifetime Expected number of events in the LHCb experiment as a function of BR($\Lambda_b \rightarrow \Delta L = 2$) for different values of \mathcal{L}_{int}^{LHCb}

Expected number of events in the LHCb experiment as a function of BR($B_s \rightarrow \Delta L = 2$) for different values of \mathcal{L}_{int}^{LHCb}

Sensitivity with the CMS experiment

Expected number of events at CMS:

$$N_{\exp}^{\text{CMS}} = \sigma(pp \to \Lambda_b(B_s)X)_{\text{acc}} \text{BR}(\Lambda_b(B_s) \to \Delta L = 2)$$
$$\times \epsilon_D^{\text{CMS}}(\Lambda_b(B_s) \to \Delta L = 2) P_N^{\text{CMS}} \mathcal{L}_{\text{int}}^{\text{CMS}}$$

$$\begin{split} &\sigma(pp \to \Lambda_b(B_s)X) \text{: production cross-section} \\ &\mathcal{L}_{\text{int}}^{\text{CMS}} \text{: integrated luminosity} \\ &\text{BR}(\Lambda_b(B_s) \to \Delta L = 2) \text{: branching fraction of the LNV process} \\ &P_N^{\text{CMS}} \text{: Majorana neutrino acceptance factor} \\ &\epsilon_D^{\text{CMS}}(\Lambda_b(B_s) \to \Delta L = 2) \text{: detection/reconstruction efficiency} \end{split}$$

Derived from measurement:

 $\sigma(pp \to \Lambda_b(B_s)X)_{acc} = (1.97 \pm 0.72)(11.98 \pm 0.17)\mu b,$ $\epsilon_D^{\text{CMS}}(\Lambda_b(B_s) \to \Delta L = 2)$ Free parameters: BR($\Lambda_b(B_s) \to \Delta L = 2$), heavy neutrino lifetime Expected number of events in the CMS experiment as a function of BR($\Lambda_b \rightarrow \Delta L = 2$) for different values of \mathcal{L}_{int}^{CMS}

Expected number of events in the CMS experiment as a function of BR($B_s \rightarrow \Delta L = 2$) for different values of \mathcal{L}_{int}^{CMS}

Sensitivity at LHC

Projected limits

Conclusion

Projected limits - Λ_b

Exclusion regions on $(m_N, |V_{\mu N}|^2)$ plane for: (left) BR $(\Lambda_b^0 \rightarrow p \pi^+ \mu^- \mu^-) < 10^{-8}$ and (right) BR $(\Lambda_b^0 \rightarrow p \pi^+ \mu^- \mu^-) < 10^{-9}$. The [black, blue, green] region represents the constraints obtained for heavy neutrino lifetimes of $\tau_N = [1, 100, 1000]$ ps. Sensitivity at LHC

Projected limits - Λ_b

Projected limits - B_s

Exclusion regions on $(m_N, |V_{\mu N}|^2)$ plane for (left) $BR(B_s^0 \to K^-\pi^-\mu^+\mu^+) < 10^{-8}$ and (right) $BR(B_s^0 \to K^-\pi^-\mu^+\mu^+) < 10^{-9}$. The black, blue, gray regions represent the bounds obtained for heavy neutrino lifetimes of $\tau_N = 1, 100, 1000$ ps, respectively

Projected limits - B_s

Exclusion regions on $(m_N, |V_{\mu N}|^2)$ plane for (left) $BR(B_s^0 \rightarrow D_s^- \pi^- \mu^+ \mu^+) < 10^{-7}$ and (right) $BR(B_s^0 \rightarrow D_s^- \pi^- \mu^+ \mu^+) < 10^{-8}$. The black, blue, gray regions represent the bounds obtained for heavy neutrino lifetimes of $\tau_N = 1, 100, 1000$ ps, respectively

Conclusions

- We have utilized a toy model to study LNV processes in the LHC
- Two processes where the LHC experiments have sensitivity are identified
- A simple extrapolation of CMS and LHCb results and performance show that these two experiments are sensitive to these final states
- It has been clearly stated that CMS and LHCb measurements of these channels could cover parts of the parameter phase space that are not currently covered by any other measurements

Conclusion

Спасибо