Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение
высшего образования
«Национальный исследовательский ядерный университет «МИФИ»

(НИЯУ МИФИ)

УДК 539.120.71

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Оценка фона Z+струи в исследовании ассоциированного рождения Z-бозона с фотоном на полном наборе данных Run2 протон-протонных столкновений с энергией 13 ТэВ в эксперименте ATLAS

Научный руководитель, к.фм.н., доцент	Е. Ю. Солдатов
Научный рукодитель	Д. Н. Пятиизбянцева
Студент	К. К. Казакова

Содержание

\mathbf{B}_{1}	веде	ние	3
	Цел	ь работы	4
1	Уст	ройство детектора ATLAS	5
	1.1	Эксперимент ATLAS	5
		1.1.1 Система координат детектора ATLAS	5
		1.1.2 Внутренний детектор	6
		1.1.3 Система калориметров детектора ATLAS	6
		1.1.4 Мюонный спектрометр	7
		1.1.5 Триггерная система	7
2	Ист	ользуемые наборы и отбор событий	8
	2.1	Отбор фотонов	8
	2.2	Отбор событий	9
3	Фог	н, обусловленный конфигурацией пучка	10
4	Оце	енка фона с помощью двумерного метода боковых интер-	
	вал	ОВ	14
	4.1	Описание метода	15
	4.2	Оптимизация регионов в ABCD-методе	18
	4.3	Оценка числа фоновых событий в сигнальном регионе	23
	4.4	Оценка статистической и систематической погрешностей	25
5	Оце	енка фона с помощью метода максимального правдоподо-	
	бия		28
	5.1	Фитирование данными	29
За	клю	рчение	33
\mathbf{C}_{1}	писо	к используемых источников	35

Введение

Стандарная модель (СМ) - наиболее тщательно проработанная теория в физике элементарных частиц. То, почему частицы обладают массой, в СМ объясняется через механизм Хиггса[1]. Однако СМ не описывает гравитацию, Тёмную Энергию, Темную Материю и многие другие явления. Можно предположить, что СМ лишь часть более универсальной теории. Этот факт даёт мотивацию проводить исследования, которые позволят найти отклонения от СМ и привести к открытию «новой физики». В данной работе исследуются высокочувствительные к отклонениям от СМ и на данный момент экспериментально не обнаруженные процессы электрослабого и квантовохромодинамического (КХД) рождения Z-бозона и фотона совместно с двумя адронными струями с последующим распадом Z-бозона на нейтрино и антинейтрино. Выбор нейтрального канала распада мотивирован его достаточно большой вероятностью (20%)[2] и возможностью отделения сигнала от фона в отличии от распада по адронному каналу (~70%). Лептонный канал распада не рассматривается из-за его малой вероятности (\sim 6.7%). Примеры диаграмм Фейнмана электрослабых процессов рассеяния векторных бозонов представлены с конечным состоянием $Z(\nu \bar{\nu}) \gamma j j$ представлены на рисунке 1. Примеры диаграмм Фейнмана для КХД процессов с конечным состоянием $Z(\nu\bar{\nu})\gamma jj$ представлены на рисунке 2.

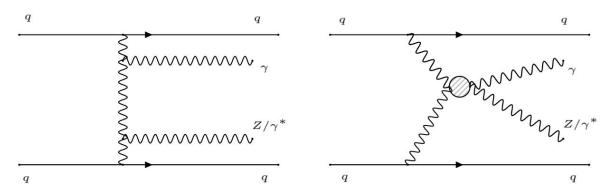


Рисунок 1 — Диаграммы Фейнмана электрослабых процессов рассеяния векторных бозонов с конечным состоянием $Z(\nu\bar{\nu})\gamma jj$

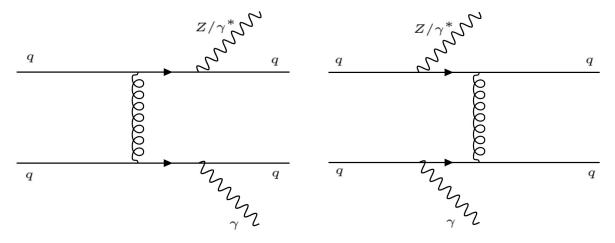


Рисунок 2 — Диаграммы Фейнмана КХД процессов с конечным состоянием $\mathbf{Z}(\nu\bar{\nu})\gamma jj$

Цель работы

Цель данного анализа заключается в оценке фона, обусловленного неверной идентификацией адронной струи как фотона в электрослабом и КХД процессах с конечным состоянием $Z(\nu\bar{\nu})\gamma jj$. В соответсвии с поставленной целью, задачами анализа являлись:

- оценка и последующая оптимизация корреляционного фактора с помощью двумерного метода боковых интервалов (ABCD метод);
- получение значения числа фоновых событий в сигнальном регионе;
- оценка статистической и систематической погрешностей для числа фоновых событий.

Однако оценить фон возможно не только с помощью двумерного метода боковых интервалов, но и с помощью метода максимального правдоподобия (ММП). Поэтому цель работы также заключалась в оценке фона с помощью данного метода и последующим сравнением результата со значением, полученным ABCD-методом.

Также целью анализа является наиболее оптимальное подавление фоновых событий, обусловленных конфигурацией пучка.

1 Устройство детектора ATLAS

1.1 Эксперимент ATLAS

Эксперимент ATLAS[3],[4] - это многоцелевой детектор (рис.3), предназначенный для исследования протон-протонных столкновений и столкновений тяжелых ионов, полученных с БАКа. Программа ATLAS предназначена для поиска бозона Хиггса и «новой физики», а так же для проверки КХД. Детектор радиально симметричен и состоит из разных подчастей, наложенных друг на друга концентрическими слоями. Детектор состоит из внутренней трековой системы, которая окружена сверхпроводящим соленоидом, адронного и электромагнитного калориметров, а также мюонного спектрометра.

1.1.1 Система координат детектора ATLAS

В детекторе используется несколько основных систем отчёты, одна из них - прямоугольная система координат. Начало отчёта выбирается в точке взаимодействия, оси расположены так, что ось x направлена к центру БАКа, ось z направлена вдоль движения пучка, а ось y направлена вверх. В циллиндрической системе координат вводятся полярный угол θ - отсчитывается от положительного направления оси z, и азимутальный угол ϕ - определяется в плоскости 0xy вокруг оси пучка. Псевдобыстрота задается формулой (1.1).

$$\eta = -\ln\left(\operatorname{tg}\left(\frac{\theta}{2}\right)\right) \tag{1.1}$$

Угловое расстояние между частицами определяется формулой (1.2).

$$\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} \tag{1.2}$$

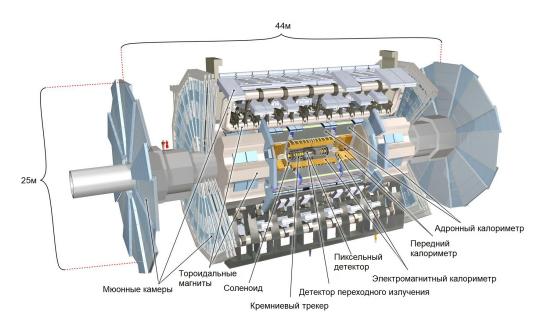


Рисунок 3 — Схема детектора ATLAS и его подсистем

1.1.2 Внутренний детектор

Внутренний детектор - это первая часть детектора ATLAS, регистрирующая продукты распада. Он относительно компактный и очень устойчив к радиационным воздействиям. Детектор состоит из трех частей: пиксельного детектора, детектора переходного излучения и кремниего трекера, изображённые на рисунке (3), которые охватывают диапозон псевдобыстрот $|\eta| < 2.5$. Внутренний детектор выполняет функции трекинга заряженных частиц. Благодаря магнитному полю от соленоида детектор фиксирует треки частиц, а также восстанавливает их импульсы.

1.1.3 Система калориметров детектора ATLAS

Система калориметров охватывает диапозон псевдобыстрот $|\eta| < 4.9$ и состоит из двух компонентов: электромагнитного и адронного калориметров. Основная задача калориметров - это измерение энергии и положения пришедших в него частиц. Также система калориметров позволяет вычислить потерянную энергию E_T^{miss} . Калориметры сконструированы так, чтобы обеспечивать надежную защиту мюонной системы от проникновения электромагнитных и адронных ливней. Электромагнитный калориметр, окружа-

ющий внутренний детектор, оптимизирован для измерения энергии фотонов и электронов. Адронный калориметр окружает электромагнитный калориметр и позволяет измерить энергию адронов.

1.1.4 Мюонный спектрометр

Мюоны проходят через описанную в разделе 1.1.3 систему калориметров почти без потерь, поэтому главной задачей мюонного спектрометра является измерение импульсов и идентификация мюонов высоких энергий. Он разработан для обнаружения заряженных частиц и измерения их импульса в пределах значений псевдобыстрот $|\eta| < 2.7$. Мюонный спектрометр состоит из камеры прецессионного слежения и триггерных камер. Камеры слежения измеряют и восстанавливают импульс мюона по виду кривизны трека, изгибаемой магнитным полем тороидных магнитов.

1.1.5 Триггерная система

Триггерная система ATLAS имеет несколько различных подсистем: триггер первого уровня и триггер высокого уровня. Главная задача триггерной системы ATLAS заключается в фильтрации интересных событий от всех остальных фоновых событий. Также триггерная система должна уменьшать частоту событий, примерно 40 кГц, до частоты, которые могут использоваться для обработки данных и для хранения, которая примерно равна 200 Гц.

2 Используемые наборы и отбор событий

В данной работе использовались наборы Монте-Карло (МК) данных, прошедшие полное моделирование и реконструкцию для геометрии детектора ATLAS. Также в анализе использовались реальные наборы данных с БАКа, полученные в результате протон-протонных столкновений с энергией в системе центра масс 13 ТэВ и интегральной светимостью 139 fb⁻¹, набранные с 2015 по 2018 гг.

МК генератор Sherpa[5] использовался для моделирования процессов с электрослабыми бозонами и/или фотонами. Электрослабые процессы $Z(\nu\bar{\nu})\gamma jj$ и $W\gamma jj$ были смоделированы с помощью генератора MadGraph[6]. Многоструйные события моделировались с помощью Sherpa. События с top-кварками смоделированы генератором Powheg[7]. Также использовались различные модели партонных ливней: Pythia8[8] и Herwig7[9].

Количества событий в каждом МК наборе отнормированы на данные.

2.1 Отбор фотонов

После реконструкции событий в МК и в данных производится классификация всех фотонов, после которой фотон будет удовлетворять критериям «жесткий» (tight) или «мягкий» (non-tight). Также из-за особенностей калориметра накладываются ограничения на псевдобыстроту фотона: $|\eta| < 2.37$, кроме $1.37 < |\eta| < 1.52$. Из-за особенностей триггерной системы накладывается ограничение на поперечный импульс фотона $p_{\rm T}^{\gamma} > 150$ ГэВ. В анализе использовались три различные фотонные изоляции, информация о которых приведена в таблице 1. В зависимости от изоляции накладывается отбор на трековую изоляцию $p_{\rm T}^{\rm cone20}/p_{\rm T}^{\gamma} < 0.05$. Используемые в таблице переменные соответствуют следующим определениям: $E_{\rm T}^{\rm cone20}$ и $E_{\rm T}^{\rm cone20}$ - энерговыделение в калориметре внутри конуса раствором $\Delta R = 0.4$ и $\Delta R = 0.2$ соответственно, $p_{\rm T}^{\rm cone20}$ есть сумма поперечных импульсов в конусе с раствором $\Delta R = 0.2$.

Изоляция	Калориметрическая изоляция	Трековая изоляция
FixedCutTightCaloOnly	$E_{\mathrm{T}}^{\mathrm{cone40}} - 0.022 {\cdot} p_{\mathrm{T}}^{\gamma} < 2.45$ ГэВ	-
FixedCutTight	$E_{\mathrm{T}}^{\mathrm{cone40}} - 0.022 {\cdot} p_{\mathrm{T}}^{ ilde{\gamma}} < 2.45 \Gamma$ эВ	$p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{\gamma} < 0.05$
FixedCutLoose	$E_{ m T}^{ m cone20} - 0.065 \cdot p_{ m T}^{\gamma} < 0$ ГэВ	$p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{ar{\gamma}} < 0.05$

Таблица 1 — Типы фотонных изоляций

2.2 Отбор событий

В работе использовались оптимизированные отборы на события. Условия на число фотонов и струй соответствует электрослабому и КХД процессам с конечным состоянием $Z(\nu\bar{\nu})\gamma jj$. Лептонное вето отсеивает процессы с лептонами в конечном состоянии. Угловые ограничения оптимизированы таким образом, чтобы максимально подавлять прочие фоны. В таблице 2 приведены отборы, которые применялись в анализе:

Переменная	Ограничение
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 130 \; \Gamma$ eB
E_{T}^{γ}	$> 150~\Gamma$ əB
Число фотонов	$N_{\gamma}=1$
Число лептонов	$N_e = 0, N_{\mu} = 0$
Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$	> 11
$ \Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},\gamma) $	> 0.7
$ \Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},j_{1}) $	> 0.4
$\Delta\phi(E_{\rm T}^{\rm miss},j_2) $	> 0.3

Таблица 2 — Критерии отбора событий для электрослабого и КХД процессов с конечным состоянием $\mathbf{Z}(\nu\bar{\nu})\gamma jj$

где $E_{\rm T}^{\rm miss}$ - потерянная поперечная энергия, величина которой есть модуль вектора потерянного поперечного импульса $|\vec{p}_{\rm T}^{\rm miss}|$. Значимость $E_{\rm T}^{\rm miss}$ - это величина, отделяющая события с правдивой величиной от событий с ложной величиной потерянной поперечной энергии. Переменные $|\Delta\phi(E_{\rm T}^{\rm miss},\gamma)|$, $|\Delta\phi(E_{\rm T}^{\rm miss},j_1)|$ и $|\Delta\phi(E_{\rm T}^{\rm miss},j_2)|$ есть разность азимутальных углов между $E_{\rm T}^{\rm miss}$ и фотоном, первой и второй адронными струями соответственно.

3 Фон, обусловленный конфигурацией пучка

При оценке фоновых событий необходимо подавить первичные фотоны, которые обусловлены конфигурацией пучка. Первичная вершина — это вершина взаимодействия протонных партонов, которая является источником процесса с высоким переданным импульсом. Эта вершина и является источником рассматриваемого фона. Введем координатную переменную $\Delta z = z_{\gamma} - z_{vtx}$, где z_{γ} и z_{vtx} - координаты исследуемого фотона и первичной вершины соответсвенно. Далее необходимо оценить количество событий в данных, исходящих от данного фона в изолированной области с жестким критерием на фотоны (isolated, tight), в изолированный обласи с мягким критерием (isolated, loose), в неизолированной области с жестким критерием (non-isolated, tight), в неизолированной области с мягким критерием (non-isolated, loose). На рисунке 4 показаны распределения по переменной Δz в каждой

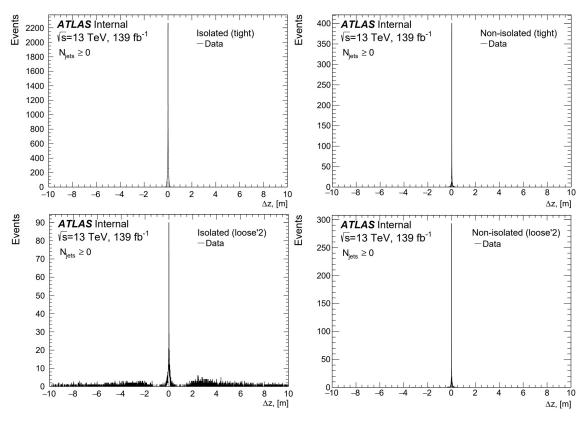


Рисунок 4 — Распределения по координатной переменной Δz для каждого региона

области в данных. Для увеличения статистики отбор на количество струй $N_{iets}\geqslant 2$ не применялся.

Чтобы исключить определение неконверсионных фотонов как сигнальных фотонов, необходимо применить отбор на Δz . Для оценки количества неконверсионных и конверсионных фотонов построены распредения, показанные на рисунке 5 в изолированной области с мягким критерием, которая

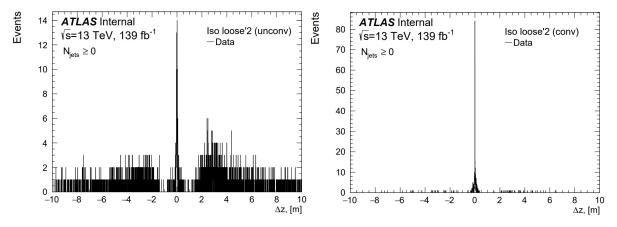


Рисунок 5 — Распределения по координатной переменной Δz в изолированный области с мягким критерием для неконверсионных фотонов (слева) и конверсионных фотонов (справа)

наиболее обогащена неконверсионными фотонами. С помощью распределения на рисунке 6 можно показать, что фотоны в данной области сконцен-

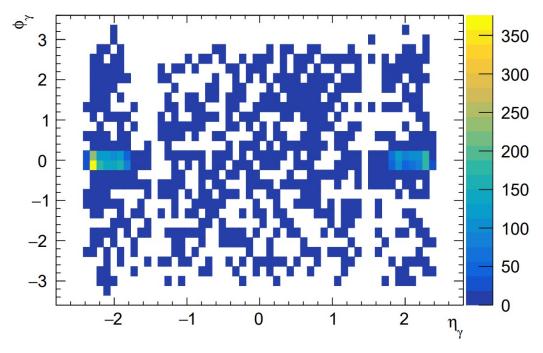


Рисунок 6 — Распределение по псевдобыстроте фотона η и азимутальному углу ϕ в изолированной области с мягким критерием

трированы преимущественно вблизи $|\phi|=0$ и $|\eta|=2$. После отбора по переменным $|\phi|<0.2$ и $|\eta|>1.7$ построено распределение для неконверсионных фотонов, которое представлено на рисунке 7. На его основе можно сделать

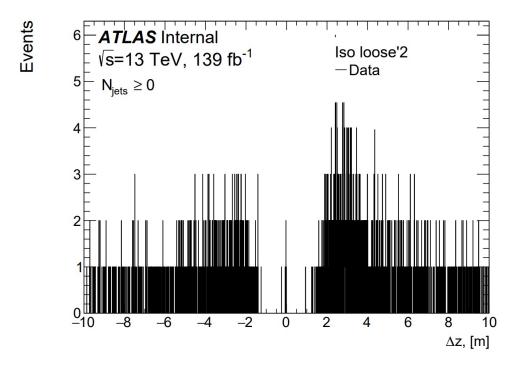


Рисунок 7 — Распределения по координатной переменной Δz в изолированный обласи с мягким критерием для неконверсионных фотонов с отборами $|\phi| < 0.2$ и $|\eta| > 1.7$

вывод, что подавляющее большинство событий, удовлетворяющие таким критериям, лежит в области $|\Delta z|>1000$ мм.

Для определения наиболее эффективного отбора на Δz , были построены распределения, представленые на рисунке 8, для эффекивности и об-

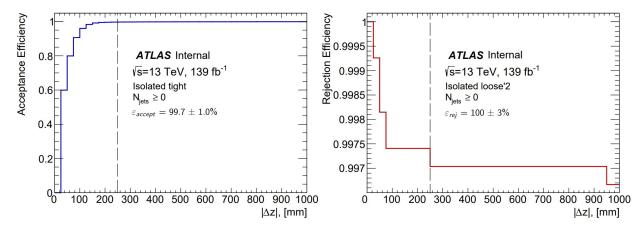


Рисунок 8 — Распределение эффекивности для изолированной области с жестким критерием (слева) и распределение обратной эффекивности для изолированной области с мягким критерием (справа)

ратной эффективности для изолированной области с жестким критерием и изолированной области с мягким критерием соответственно, в которой наложены отборы на $|\phi|$ и $|\eta|$.

Наиболее эффективному отбору соответсвует $|\Delta z| < 250$ мм. Значение для эффективности составило $\epsilon_{accept} = 99.7 \pm 1.0\%$, значение для обратной эффективности составило $\epsilon_{rej} = 100 \pm 3\%$, что говорит об оптимальном ограничении на координатную переменную $|\Delta z|$. Полученный отбор будет применяться далее в оценке фона $jet \to \gamma$.

4 Оценка фона с помощью двумерного метода боковых интервалов

Исследуемый электрослабый и КХД процессы $Z(\nu\bar{\nu})\gamma jj$ обладают конечным состоянием, который может быть воспроизведен в ряде других процессов, которые будут являться фоновыми. Такими процессами являются:

- конечные состояния $\tau\nu\gamma$ и $l\nu\gamma$ от КХД и электрослабого рождения $W\tau$, где τ распадается на адроны, или где электрон или мюон от распада τ или W не регистрируется детектором;
- ullet события $\gamma+$ jet, в которых большой E_T^{miss} возникает из комбинации реального E_T^{miss} от нейтрино в распадах тяжелых кварков и от неверно измеренной энергии струй;
- события $W(e\nu)$, моно-t и $t\bar{t}$, где электрон в конечном состоянии неверно идентифициаруется как фотон $(e \to \gamma)$;
- события от рождения $t\bar{t}\gamma$, когда один или оба из W бозона от распада t-кварка распадается на лептоны. Далее либо τ распадается на адроны, либо не восстанавливается;
- $Z(\nu\bar{\nu})$ + jets и многоструйные события, где одна из струй неверно идентифицируется как фотон $(jet \to \gamma)$;
- события $Z(ll) + \gamma$ (преимущественно τ лептоны), где τ распадается на адроны или когда электрон или мюон от распада τ или Z не регистрируется.

В данном анализе производится оценка фона, обусловленного неверной идентификацией адронной струи как фотона $(jet \to \gamma)$, а также оптимизация методов этой оценки. Фон, полученный на основе того, что объекты были неправильно идентифицированы, обычно плохо моделируется с помощью МК, поэтому для наиболее точной оценки более надеждым является метод, основанный на данных.

4.1 Описание метода

Наибольшая доля событий, где струя неверно идентифицируется как фотон ($jet \to \gamma$) происходит в процессах $Z(\nu \bar{\nu})$ + jets и в многоструйных процессах. Так как эти фоны не могут быть оценены из МК, в анализе используется двумерный метод боковых интервалов (далее ABCD-метод). В качестве переменных используются идентификационные и изоляционные критерии для фотонов, в основе которых лежат переменные формы электромагнитного ливня в калориметрах. Данный метод содержит четыре основых региона, которые схематично представлены на рисунке 9. Для фотонной изоляции FixedCutTight сигнальный и контрольные регионы (КО) удовлетворяют следующим требованиям:

- «жёсткая» (tight) и изолированная (isolated) область (регион A сигнальный регион): события в этом регионе содержат лидирующий фотон, который отвечает критерию изолированности ($E_{\rm T}^{\rm cone40}$ -0.022· $p_{\rm T}^{\gamma}$ < 2.45 ГэВ) и удовлетворяет «жёсткому» критерию;
- «жёсткая» (tight), но неизолированная (non isolated) область (KO B): события в этом регионе содержат лидирующий фотон, который отвечает критерию изолированности (2.45 + iso gap ГэВ < ($E_{\rm T}^{\rm cone40}$ -0.022· $p_{\rm T}^{\gamma}$ < U_{cut} ГэВ) и удовлетворяет «жёсткому» критерию;
- «мягкая» (non-tight) и изолированная (isolated) область (KO C): события в этом регионе содержат лидирующий фотон, который отвечает критерию изолированности ($E_{\rm T}^{\rm cone40}$ -0.022· $p_{\rm T}^{\gamma}<2.45~\Gamma$ эВ) и удовлетворяет «мягкому» критерию;
- «мягкая» (non-tight), но неизолированная (non isolated) область (KO D): события в этом регионе содержат лидирующий фотон, который отвечает критерию изолированности (2.45 + iso gap ГэВ < ($E_{\rm T}^{\rm cone40}$ $0.022 \cdot p_{\rm T}^{\gamma} < \rm U_{\rm cut}$ ГэВ) и удовлетворяет «мягкому» критерию.

Изоляционный зазор (isolation gap) между изолированными и неизолированными областями выбран равным 2 ГэВ с целью уменьшить утечки сигнальных событий из области A в контрольные регионы. Ограничение сверху по переменной изоляции (U_{cut}) не имеет определённого значения и определяется для каждого анализа в отдельности. Для изоляций FixedCutTightCaloOnly

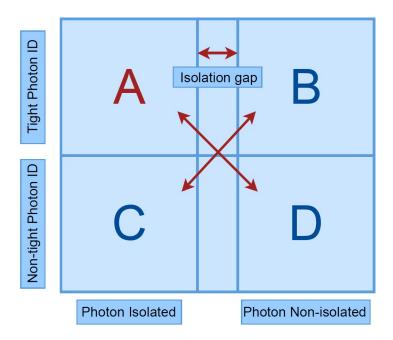


Рисунок 9 — Схематичная иллюстрация двумерного метода боковых интервалов с разделением на $A,\,B,\,C$ и D контрольные области

и FixedCutLoose определение сигнальной и контрольных областей происходит аналогичным образом.

Фотон, которому присваивается значение «мягкий», удовлетворяет не всем критериям формы электромагнитного ливня. Поэтому задаются несколько типов «мягкого» фотона (loose'), называемые рабочими точками, в которых, по крайней мере, один из следующих критериев должен нарушаться:

• $loose'2: w_{s3}, F_{side}$

• $loose'3: w_{s3}, F_{side}, \Delta E$

• $loose'4: w_{s3}, F_{side}, \Delta E, E_{ratio}$

• $loose'5: w_{s3}, F_{side}, \Delta E, E_{ratio}, w_{tot}$

где w_{s3} - ширина электромагнитного ливня с использованием трёх стриповых (первых слоёв ЭМ калориметра) слоёв вокруг стрипового слоя с максимальной энергией; $F_{\rm side}$ - энергия вне трёх стриповых слоёв, но внутри семи слоёв; ΔE - разница энергий стриповых слоёв, где в одном слое выделилась вторая по величине энергия, и слоя, где выделилась наименьшая энергия; $E_{\rm ratio}$ - отношение разности энергий, ассоциированных с наиболее высоким и вторым по величине выделением энергии к сумме этих энергий;

 w_{tot} - полная поперечная ширина ливня. Основное предположение ABCD-метода в том, что заданные KO не коррелируют между собой, то есть должно выполняться равенство (4.1):

$$\frac{N_{\rm A}^{jet \to \gamma}}{N_{\rm B}} = \frac{N_{\rm C}}{N_{\rm D}} \tag{4.1}$$

Также предположение метода заключается в том, что корреляция между «мягким» критерием и изоляцией отсутствует, поэтому должна выбираться наименее скоррелированная рабочая точка loose'. Для этого вводится корреляционный фактор R, который для МК данных задается как $R = \frac{N_{\rm A}^{\rm MC} N_{\rm D}^{\rm MC}}{N_{\rm B}^{\rm MC} N_{\rm C}^{\rm MC}}$, и в случае отсутствия корреляции R=1.

Для вычисления корреляционного фактора R между изоляцией и различными рабочими точками для данных добавляется два неизолированных контрольных региона (Е и F), которые являются частью контрольных регионов В и D. Этот метод на основе данных схематично изображён на рисунке 10. Контрольные регионы Е и F задаются следующим образом:

- «жёсткая» (tight) и ещё более неизолированная область (KO E): события в этом регионе содержат лидирующий фотон, который отвечает критерию изолированности ($M_{\rm cut}$ ГэВ < E_T^{cone40} $0.022 \cdot p_T^{\gamma} < U_{\rm cut}$ ГэВ) и удовлетворяет «жёсткому» критерию;
- «мягкая» (non-tight) и ещё более неизолированная область (KO F): события в этом регионе содержат лидирующий фотон, который отвечает критерию изолированности ($M_{\rm cut}$ ГэВ < E_T^{cone40} $0.022 \cdot p_T^{\gamma} < U_{\rm cut}$ ГэВ) и удовлетворяет «мягкому» критерию.

Точка разделения областей ($M_{\rm cut}$) В и D выбирается исходя из исследуемого процесса таким образом, чтобы $R_{\rm data}$ стремилась к 1. Для ABCD-метода, основанного на данных, фактор $R_{\rm data}$ задается следующим уравнением (4.2):

$$R_{\text{data}} = \frac{N_{\text{B-E}}^{\text{data}} N_{\text{F}}^{\text{data}}}{N_{\text{D-F}}^{\text{data}} N_{\text{E}}^{\text{data}}}$$
(4.2)

где количество событий в каждом регионе есть данные за вычетом сигнальных событий и фонов, не относящихся к оцениваемому фону.

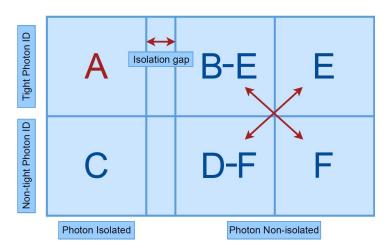


Рисунок 10 — Схематичная иллюстрация двумерного метода боковых интервалов выделением в регионах В и D двух дополнительных регионов Е и F соответственно

4.2 Оптимизация регионов в АВСО-методе

Регионы ABCD-метода, описанные в параграфе 4.1, необходимо определять для каждого анализа в отдельности. Поэтому в данном разделе описан способ оптимизации метода, который приведет к наиболее нескоррелированному значению R фактора. Значения корреляционных факторов R для различных рабочих точек loose' с произвольными границами регионв (а именно ограничение сверху составляет $U_{\rm cut}=29.45~\Gamma$ эВ и точка разделения областей В и D $U_{\rm cut}=11.45~\Gamma$ эВ) и для трех различных изоляции без отборов по значимости $E_T^{\rm miss}$ и азимутальным углам представлены в таблице 3. Эти

FixedCutTight	loose'2	loose'3	loose'4	loose'5
MC	1.12 ± 0.12	1.25 ± 0.13	1.32 ± 0.12	1.53 ± 0.14
Data-driven	1.01 ± 0.08	1.01 ± 0.08	0.94 ± 0.07	0.95 ± 0.07
FixedCutTightCaloOnly	loose'2	loose'3	loose'4	loose'5
MC	1.05 ± 0.08	1.16 ± 0.08	1.24 ± 0.08	1.41 ± 0.09
Data-driven	1.18 ± 0.02	1.20 ± 0.02	1.16 ± 0.02	1.18 ± 0.02
$\overline{ ext{FixedCutLoose}}$	loose'2	loose'3	loose'4	loose'5
MC	1.28 ± 0.19	1.36 ± 0.18	1.34 ± 0.17	1.6 ± 0.2
Data-driven	1.23 ± 0.10	1.23 ± 0.09	1.17 ± 0.08	1.20 ± 0.07

Таблица 3 — Оценка кореляционных факторов на основе МК и основанном на данных методом без отборов по значимости $E_{\rm miss}$ и по азимутальным углам с $\rm U_{\rm cut}=29.45~\Gamma \bar{p}B$ и $\rm M_{\rm cut}=11.45~\Gamma \bar{p}B$

отборы не применяются для увеличения статистики. В анализе не использо-

вались многоструйные МК наборы, так как они имеют крайне ограниченную статистику, что привело бы к проблемам с нормировкой. Также для оценки R фактора не накладываются отборы на струи для увеличения статистики. Так как процесс Zj плохо моделируется МК, то необходимо, чтобы значения R фактора, полученые на основе данных, были так же близки к 1. Значения, представленные в таблице 3, получены как с помощью МК данных, так и методом, основанным на данных.

Значения корреляционных факторов с учётом отборов по значимости $E_{\mathrm{T}}^{\mathrm{miss}}$ и азимутальным углам с аналогичными границами регионов для к O представлены в таблице 4.

FixedCutTight	loose'2	loose'3	loose'4	loose'5
MC	1.09 ± 0.16	1.17 ± 0.16	1.24 ± 0.15	1.41 ± 0.17
Data-driven	2.0 ± 0.5	1.8 ± 0.5	1.7 ± 0.4	1.8 ± 0.4
FixedCutTightCaloOnly	loose'2	loose'3	loose'4	loose'5
MC	1.08 ± 0.11	1.16 ± 0.11	1.24 ± 0.11	1.40 ± 0.12
Data-driven	1.30 ± 0.12	1.33 ± 0.11	1.27 ± 0.10	1.29 ± 0.10
FixedCutLoose	loose'2	loose'3	loose'4	loose'5
MC	1.6 ± 0.3	1.6 ± 0.3	1.6 ± 0.3	2.0 ± 0.4
Data-driven	2.6 ± 1.0	2.1 ± 0.8	2.2 ± 0.8	2.05 ± 0.7

Таблица 4 — Оценка кореляционных факторов на основе МК и данных с отборами по значимости $E_{\rm miss}$ и по азимутальным углам с $\rm U_{\rm cut}=29.45~\Gamma \Rightarrow B$ и $\rm M_{\rm cut}=11.45~\Gamma \Rightarrow B$

На основе таблиц 3 и 4 можно сделать вывод, что значения без отборов наименее скоррелированные. Однако, с помощью гистограмм можно показать, что переменные значимости $E_{\rm miss}$, $|\Delta\phi(E_{\rm T}^{\rm miss},\gamma)|$, $|\Delta\phi(E_{\rm T}^{\rm miss},j_1)|$ и $|\Delta\phi(E_{\rm T}^{\rm miss},j_2)|$ коррелируют с переменной изоляции. Двумерные гистограммы, построенные на основе данных для изоляции FixedCutTight, показаны на рисунке 11. Поэтому далее будут применятся все отборы из таблицы 2 (параграф 2.2). Стоит отметить, что изоляция FixedCutLoose дает наиболее скоррелированные значения. Распределение R фактора на основе МК для трех различных изоляций и loose'2 в зависимости от ограничения по переменной изоляции сверху представлено на рисунке 12. На его основе можно сделать вывод, что изоляция FixedCutLoose не подходит для анализа электрослабого и КХД процессов с конечным состоянием $Z(\nu\bar{\nu})\gamma jj$, поэтому в последствии эта изоляция применяться больше не будет.

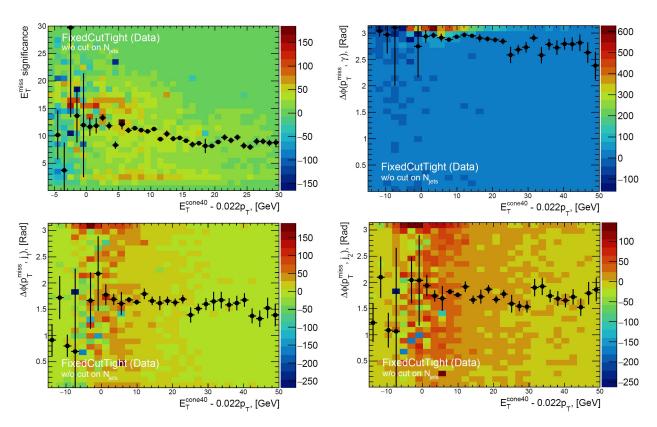


Рисунок 11 — Двумерные распределения с профайлом для пременных значимости $E_{\rm miss}, \, |\Delta\phi(E_{\rm T}^{\rm miss},\gamma)|, \, |\Delta\phi(E_{\rm T}^{\rm miss},j_1)|$ и $|\Delta\phi(E_{\rm T}^{\rm miss},j_2)|$ от переменной изоляции $E_{\rm T}^{\rm cone40}$ — $0.022\cdot p_{\rm T}^{\gamma}$

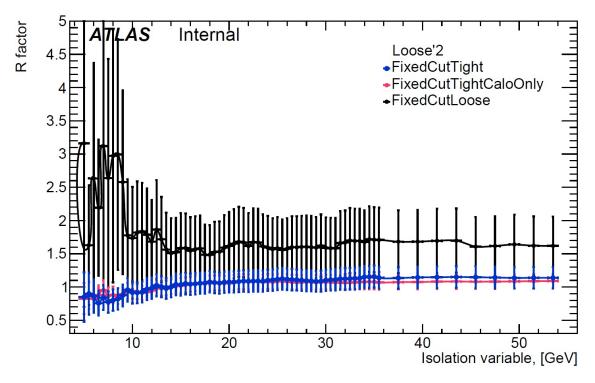


Рисунок 12 — Распределение корреляционного фактора R на MK от переменной изоляции для изоляций FixedCutTight, FixedCutCaloOnly, FixedCutLoose и рабочей точки loose'2

Далее необходимо выбрать наиболее оптимальное ограничение сверху по переменной изоляции, если это необходимо, и найти точку разделения КО В и D для метода, основанного на данных. Точка разделения должна быть выбрана так, чтобы значение корреляционного фактора было как можно ближе к 1. Для определения ограничения сверху были построены распределения по переменной изоляции:

- для МК событий, в которых лидирующий фотон удовлетворяет критерию «жесткий»;
- для МК событий, в которых лидирующий фотон удовлетворяет критерию «мягкий»;
- для данных, в которых лидирующий фотон удовлетворяет критерию «мягкий»;

Распределения для изоляций FixedCutTight и FixedCutTightCaloOnly представлены на рисунке 13. На основе распределений можно сделать вы-

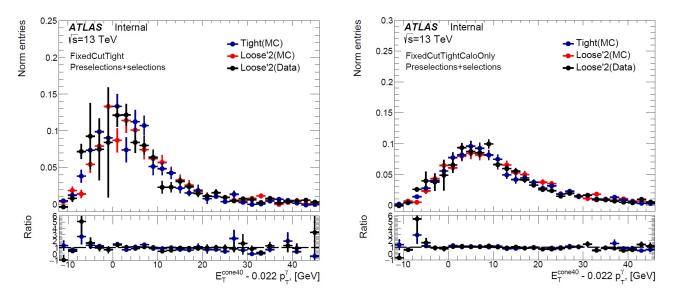


Рисунок 13 — Распределения по перменной изоляций для FixedCutTight (слева) и FixedCutTightCaloOnly (справа)

вод, что для исключения больших несоответствий данных и МК, наиболее оптимальное ограничение сверху для изоляции FixedCutTight находится в регионе [25-27] ГэВ. Однако для изоляции FixedCutTightCaloOnly ограничение сверху необосновано из-за хорошего соответствия МК и данных.

В соответствии с выводами, можно сделать новую оценку корреляционного фактора. В таблице 5 приведены значения R факторов на МК и на данных для изоляции FixedCutTight и ограничением сверху по изоляции

 $U_{\rm cut}=25.45~\Gamma$ эВ, а также с выбранной точкой разделения КО В и D $M_{\rm cut}=8.75~\Gamma$ эВ. В таблице 6 приведены значения R факторов на МК и на данных

$FixedCutTight, U_{cut} = 25.45 \text{ GeV}$						
MK						
loose'2 loose'3 loose'4 loose'5						
R-factor 1.12 ± 0.16 1.21 ± 0.17 1.28 ± 0.16 1.44 ± 0						
	Данные					
M _{cut} loose'2 loose'3 loose'4 loose'5						
8.75 1.0 ± 0.3 1.0 ± 0.3 1.0 ± 0.3 1.1 ± 0.3						
	loose'2 1.12 ± 0.16 loose'2	МК loose'2 loose'3 1.12 ± 0.16 1.21 ± 0.17 Данные loose'2 loose'3	$\frac{\text{MK}}{\text{loose'2}} = \frac{\text{MK}}{\text{loose'3}} = \frac{\text{loose'4}}{1.12 \pm 0.16} = \frac{\text{Данныe}}{\text{loose'2}} = \frac{\text{Данныe}}{\text{loose'3}} = \frac{\text{loose'4}}{\text{loose'4}}$			

Таблица 5 — Оценка корреляционного фактора для изоляции FixedCutTight и верхнем ограничением $U_{\rm cut}=25.45~\Gamma$ эВ

для изоляции FixedCutTightCaloOnly без ограничения сверху по изоляции, а также с выбранной точкой разделения KO B и D $\rm M_{cut}=10.45~\Gamma pB$. На ос-

Fix	FixedCutTightCaloOnly, без ограничения на U _{cut}						
	MK						
	loose'2 loose'3 loose'4 loose'5						
R-factor	1.45 ± 0.12						
		Данные					
$oxed{\mathrm{M}_{\mathrm{cut}}}$ loose'2 loose'3 loose'4 loose'5							
10.45 1.21 ± 0.10 1.25 ± 0.10 1.21 ± 0.09 1.23 ± 0.09							

Таблица 6 — Оценка корреляционного фактора для изоляции FixedCutTightCaloOnly без верхнего ограничения по U_{cut}

нове оценки корреляционного фактора для двух различных изоляций можно сделать вывод, что хоть корреляция для FixedCutTightCaloOnly между изоляцией и различными видами «слабых» идентификационных критериев фотонов для МК меньше, для данных наблюдается большая корреляция для изоляции FixedCutTight. Однако из-за наложения трековой изоляции значительно уменьшается статистика.

Эту проблему можно решить, наложив в КО В и D (т.е. в неизолированных регионах) отбор по обратной трековой изоляции, то есть применить

отбор $p_{\rm T}^{\rm cone20}/p_{\rm T}^{\gamma}>0.05$. Оценка с применением отбора по обратной трековой изоляции приведена в таблице 7. Оценка корреляционного фактора R, пред-

FixedCu	$FixedCutTight, U_{cut} = 25.45 \text{ GeV}, обратная трековая изоляция$						
	MK						
	loose'2 loose'3 loose'4 loose'5						
R-factor	R-factor 1.07 ± 0.13 1.23 ± 0.14 1.34 ± 0.14 1.62 ± 0.17						
		Данны	e				
M_{cut}	$ m M_{cut}$ loose'2 loose'3 loose'4 loose'5						
8.75 1.12 ± 0.11 1.16 ± 0.11 1.16 ± 0.10 1.22 ± 0.10							

Таблица 7 — Оценка корреляционного фактора для изоляции FixedCutTight и верхнем ограничением $U_{cut}=25.45~\Gamma$ эВ и обратной трековой изоляцией

ставленная в таблице 7, является наиболее оптимальной и будет применяться далее. Рабочая точка loose'2 имеет наибольшее согласие для R фактора между МК и данными, а также имеет наименьшую корреляцию, поэтому именно этот критерий используется для определения «мягкого» фотона.

4.3 Оценка числа фоновых событий в сигнальном регионе

Одно из основных предположений ABCD-метода заключается в том, что сигнальный регион A преимущественно состоит из сигнальных событий, в то время как три контрольных региона B, C и D состоят из фоновых событий. Однако присутствуют «утечки» сигнальных событий в KO, которые хорошо оцениваются из МК. Каждый региона задать следующим образом:

$$\begin{cases} N_A = N_A^{\text{sig}} + N_A^{\text{bkg}} + N_A^{\text{jet} \to \gamma}; \\ N_B = c_B N_A^{\text{sig}} + N_B^{\text{bkg}} + N_B^{\text{jet} \to \gamma}; \\ N_C = c_C N_A^{\text{sig}} + N_C^{\text{bkg}} + N_C^{\text{jet} \to \gamma}; \\ N_D = c_D N_A^{\text{sig}} + N_D^{\text{bkg}} + N_D^{\text{jet} \to \gamma}; \end{cases}$$

где $N_i^{
m bkg}$ - фон, не относящийся к оцениваемому фону $jet o \gamma$ в каждой КО. Количества событий оцениваются из МК, однако фон, обусловленный невер-

ной идентификации электрона как фотона оценивается с помощью метода, основанного на данных. Параметры «утечки» c_i определяются отношением количества сигнальных событий в КО к событиям в сигальной области и задаются как:

$$c_B = \frac{N_B^{\text{sig}}}{N_A^{\text{sig}}};$$

$$c_C = \frac{N_C^{\text{sig}}}{N_A^{\text{sig}}};$$

$$c_D = \frac{N_D^{\text{sig}}}{N_A^{\text{sig}}}.$$

Параметры «утечки» для каждого региона представлены в таблице 8:

	c_B	c_C	c_D
Значение	0.00645 ± 0.00018	0.0091 ± 0.0002	0.00011 ± 0.00002

Таблица 8 — Параметры утечки для каждого региона

После оценки параметров «утечки» необходимо в каждом регионе из данных N_i вычесть фоновые события $N_i^{\rm bkg}$, которые не относятся к исследуемому фону jet $\to \gamma$. Обозначим эту разницу $\widetilde{N}_i = N_i - N_i^{\rm bkg}$. Подставляя полученные выражения с учётом R фактора для данных и loose'2 из таблицы 7 в уравнение (4.1), получим:

$$N_{\rm A}^{\rm sig} = \widetilde{N}_{\rm A} - R(\widetilde{N}_{\rm B} - c_{\rm B} N_{\rm A}^{\rm sig}) \frac{\widetilde{N}_{\rm C} - c_{\rm C} N_{\rm A}^{\rm sig}}{\widetilde{N}_{\rm D} - c_{\rm D} N_{\rm A}^{\rm sig}}$$
(4.3)

Решая квадратное уравнение (4.3) относительно $N_{
m A}^{
m sig},$ получим:

$$N_{\rm A}^{\rm sig} = \frac{b - \sqrt{b^2 - 4ac}}{2a} \tag{4.4}$$

где a, b и c имеют следующие выражения:

$$\begin{cases} a = c_D - Rc_B c_C; \\ b = \widetilde{N}_D + c_D \widetilde{N}_A - R(c_B \widetilde{N}_C + c_C \widetilde{N}_B); \\ c = \widetilde{N}_D \widetilde{N}_A - R\widetilde{N}_C \widetilde{N}_B. \end{cases}$$

Число фоновых событий в области A можно получить, подставляя решение (4.4) в выражение для N_A .

Полученные значения событий с помощью ABCD-метода для данных и всех фонов, не относящиеся к фону от $jet \to \gamma$, представлены в таблице 9. Значения событий для фона $W(e\nu)$, top, tt получены с помощью метода, основанного на данных.

	Data	$W\gamma QCD$	$W\gamma EWK$	$W(e\nu), top, tt$	$tt\gamma$	$\gamma + \mathrm{jet}$	$Z(ll)\gamma$	$W(\tau\nu)$
A	blinded ± 49	681 ± 8	65.6 ± 0.5	180 ± 3	184 ± 3	258 ± 16	20.6 ± 1.1	13 ± 4
В	619 ± 25	3.8 ± 0.5	0.23 ± 0.03	1.052 ± 0.014	1.3 ± 0.2	13 ± 3	0.12 ± 0.06	51 ± 4
\overline{C}	67 ± 8	6.0 ± 0.7	0.68 ± 0.05	2.24 ± 0.03	2.0 ± 0.3	2.3 ± 1.2	0.14 ± 0.06	11 ± 3
D	431 ± 21	0.03 ± 0.03	0.011 ± 0.006	0 ± 0	0.11 ± 0.06	0 ± 0	0 ± 0	48 ± 4

Таблица 9 — Значения событий для данных и фоновых процессов, не относящихся к фону $jet \to \gamma$, полученные из ABCD-метода

На основе значений из таблицы 9 и решения (4.4) получена оценка центрального значения фоновых событий $jet \to \gamma$ в сигнальном регионе A, которая равна $N_{\rm A}^{{\rm jet} \to \gamma} = 54$.

4.4 Оценка статистической и систематической погрешностей

Для получения статистической погрешности в каждой КО были независимо проварьированы числа событий на $\pm 1\sigma$ для данных и всех фоновых процессов. Полученные значения были просуммированы в квадратурах. Конечные значения статистической погрешности составили +15 для верхнего предела и -15 для нижнего предела.

Систематическая погрешность была оценена методом варьирования определения областей ABCD метода, а именно были использованы альтернативные рабочие точки и проварьирован изоляционный промежуток между

областями. Значения, на которые был проварьирован изоляционный промежуток сверху и снизу составил примерно $\pm 1\sigma$ для КО В и D. Результаты отклонений от полученных значениях представлены в таблице 10. Наибольшее отклонение составило 19%.

Центральное значение	54^{+15}_{-15}
loose'3	-4
${f loose'4}$	+10
loose'5	+8
Изоляционный зазор $+0.5$ ГэВ	±0
Изоляционный зазор -0.9 ГэВ	+1

Таблица 10 — Центральное значение фоновых событий $jet \to \gamma$ из данных и отклонения от него для вариаций определения областей ABCD.

Систематические погрешности для параметров «утечки» можно оценить двумя способами:

- с помощью различных МК генераторов и моделей партонных ливней
- из погрешности на эффективность реконструкции фотона

Парамеры «утечки» и центральные значения событий $jet \to \gamma$ для различных МК генераторов и моделей партонных ливней приведены в таблице 11. Отклонения являются незначительными, поэтому необходимо применить более точный метод.

	Различные МК генераторы и модели партонных ливней		
Параметры утечки	MadGraph+Pythia8, Sherpa 2.2	MadGraph+Herwig7, MadGraph+Pythia8	δ
c_{B}	0.00645 ± 0.00018	0.0039 ± 0.0006	40%
$c_{ m C}$	0.0091 ± 0.0002	0.0093 ± 0.0008	2%
$c_{ m D}$	0.00011 ± 0.00002	0.00015 ± 0.00008	27%
$jet \rightarrow \gamma$	54^{+15}_{-15}	54^{+15}_{-15}	0%

Таблица 11 — «Утечка сигнала» в контрольные области В,С и D для альтернативных МК генераторов и моделей партонных ливней. В нижней строке показано отклонение от центрального значения для случая альтернативных МК генераторов и моделей партонных ливней

Более точно оценить систематические погрешности параметров «утечки» можно из погрешности на эффективность реконструкции фотона $\delta_{
m iso/ID}^{
m eff}$

(относительная погрешность), так как различие между генераторами обусловлено преимущественно неидеальным моделированием изоляции и идентификации. По определению, моделирование изоляции (iso) фотонов влияет только на параметры «утечки» c_B и c_D , а идентификация (ID) — на c_C и c_D . В итоге можно получить следующие соотношения для относительной погрешности параметров «утечки»:

$$ullet \ \sigma_{
m iso}^{
m c_B} = \delta_{
m iso}^{
m eff} \cdot (c_B+1)/c_B$$

•
$$\sigma_{ ext{ID}}^{ ext{c}_{ ext{C}}} = \delta_{ ext{ID}}^{ ext{eff}} \cdot (c_C + 1)/c_C$$

•
$$\sigma_{\mathrm{iso}}^{\mathrm{c_D}} = \delta_{\mathrm{iso}}^{\mathrm{eff}} \cdot (c_B + 1)/c_B$$

$$ullet$$
 $\sigma_{ ext{ID}}^{ ext{c}_{ ext{D}}} = \delta_{ ext{ID}}^{ ext{eff}} \cdot (c_C+1)/c_C$

В данных соотношениях взяты значения $\delta_{\rm iso}^{\rm eff}=0.013$ и $\delta_{\rm ID}^{\rm eff}=0.013$. Наибольшее значение погрешности оценки с помощью уточнённого метода составило 1.3%. Суммарное значение всех систематических погрешностей составило 19%. Конечное значение фоновых событий от неверной идентификации адронной струи как фотона в сигнальной области А составляет $N_A^{jet \to \gamma}=54\pm15({\rm ctat.})\pm10({\rm cuct.})$, в то время как значения, предсказанные МК наборами для многоструйных процессов и процесса $Z(\nu\nu)+jets$ составляет 17 ± 12 . Именно поэтому в анализе используется метод оценки фона, основанный на данных, так как МК наборы $Z(\nu\nu)+jets$ и многоструйных процессов имеют недостаточную статистику, из которой невозможно точно оценить число фоновых событий.

5 Оценка фона с помощью метода максимального правдоподобия

К ABCD-методу, который был подробно описан в параграфе 4.1, можно подойти и с другой стороны, а именно используя статистическую модель. Такая модель построена на предположение о том, что существует взаимосвязь между фоновым распределением и различными регионами. Основное предположение ABCD-метода задается уравнением (5.1):

$$\widetilde{N}_A = \widetilde{m}\widetilde{N}_B, \widetilde{N}_C = \widetilde{m}\widetilde{N}_D$$
 (5.1)

Данные в каждом регионе есть $\mathbf{data} = \{N_A, N_B, N_C, N_D\}$. Тогда предположив, что распределение в каждом регионе описывается распределением Пуассона, можно составить функцию правдободобия:

$$L(\mathbf{data}|\widetilde{N_B},\widetilde{N_D},\widetilde{m}) = (N_A|\widetilde{m}\widetilde{N_B})Pois(N_B|\widetilde{N_B})Pois(N_C|\widetilde{m}\widetilde{N_D})Pois(N_D|\widetilde{N_D})$$

где $\widetilde{N_B}$, $\widetilde{N_D}$ и \widetilde{m} являются свободными параметрами. Подставив распределение Пуассона в функцию правдоподобия, получим выражение

$$L(\mathbf{data}|\widetilde{N_B},\widetilde{N_D},\widetilde{m}) = \frac{e^{-\widetilde{N}_{tot}} \cdot (\widetilde{m}\widetilde{N_B})^{N_A} \cdot (\widetilde{N_B})^{N_B} \cdot (\widetilde{m}\widetilde{N_D})^{N_C} \cdot (\widetilde{N_D})^{N_D}}{N_A! \cdot N_B! \cdot N_C! \cdot N_D!}$$

где $\widetilde{N}_{tot} = \widetilde{m}\widetilde{N}_B + \widetilde{N}_B + \widetilde{m}\widetilde{N}_D + \widetilde{N}_D$. Затем, взяв натуральный логарифм от функции правдоподобия, получим выражение:

$$\ln L = -\widetilde{N}_{tot} + N_A \ln \left(\widetilde{m} \widetilde{N}_B \right) + N_B \ln \left(\widetilde{N}_B \right) + N_C \ln \left(\widetilde{m} \widetilde{N}_D \right) + N_D \ln \left(\widetilde{N}_D \right)$$

Затем необходимо продифференцировать функцию $\ln L$ по неизвестным параметрам, то есть по $\widetilde{N_B},\ \widetilde{N_D}$ и $\widetilde{m}.$ Полученная система уравнений 5 будет

выглядеть следующим образом:

$$\begin{cases} \frac{\partial L}{\partial \widetilde{m}} = -\widetilde{N}_B - \widetilde{N}_D + \frac{N_A}{\widetilde{m}} + \frac{N_C}{\widetilde{m}} = 0, \\ \frac{\partial L}{\partial \widetilde{N}_B} = -\widetilde{m} - 1 + \frac{N_A}{\widetilde{N}_B} + \frac{N_B}{\widetilde{N}_B} = 0, \\ \frac{\partial L}{\partial \widetilde{N}_D} = -\widetilde{m} - 1 + \frac{N_C}{\widetilde{N}_D} + \frac{N_D}{\widetilde{N}_D} = 0. \end{cases}$$

Решение такой системы задаются следующими величинами:

$$\widetilde{m} = \frac{N_A + N_C}{N_B + N_D}, \ \widetilde{N}_B = \frac{(N_A + N_B)(N_B + N_D)}{N_A + N_B + N_C + N_D}, \ \widetilde{N}_D = \frac{(N_C + N_D)(N_B + N_D)}{N_A + N_B + N_C + N_D}.$$

Полученные выражение для \widetilde{N}_B , \widetilde{N}_D и \widetilde{m} , и как следствие для \widetilde{N}_A и \widetilde{N} , соответствуют наиболее вероятным количествам событий в каждом регионе при заданных значениях N_A , N_B , N_C , N_D .

Однако данная модель слишком проста, так как она не учитывает биннинг внутри каждого региона, а также форму распределений. Поэтому необходимо использовать более сложный метод.

5.1 Фитирование данными

На основе базового метода, описанного в параграфе 5, можно создать более сложную модель с использованием пакета TRooFit[10]. Преимущества данной модели заключаются в следующем:

- учитёт биннинга внутри каждого региона;
- использование информации о форме распределения;
- возможность использования более сложной зависимости между регионами, например линейной.

Основная идея метода заключается в фитировании формы сигнала и исследуемого фона данными. Так как в анализе оценивается фон, обусловленный неверной идентификацией струи как фотона, необходимо вычесть из данных все остальные фоны, не относящиеся к исследуемому. Также необходима информация о форме распределения и количестве событий сигнала. Полученные соотношения сигнала и данных за вычетом всех остальных фонов

в каждом регионе до фитирования с количеством бинов $N_{\rm bins}=1$ представлены на рисунке 14. Метод предполагает, что до фитирования оцениваемый фон в каждом регионе равен единице. Далее начинается процесс фитирова-

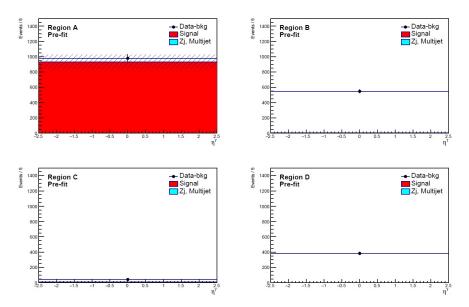


Рисунок 14 — Распределение сигнала и данных за вычетом всех остальных фонов для случая $N_{bins}=1$ до фитирования

ния данными за вычетом всех остальных фонов. Результат фитирования с количеством бинов $N_{\rm bins}=1$ представлен на рисунке 15. Число фоновых со-

Рисунок 15 — Распределение сигнала, исследуемого фона и данных за вычетом всех остальных фонов для случая $N_{bins}=1$ после фитирования

бытий от неверной идентификации адронной струи как фотона в сигнальной области A, оцененное методом максимального правдободобия с $N_{\rm bins}=1$ составляет $N_A^{jet \to \gamma}=48\pm 10$, что совпадает со значением, полученным стандарт-

ным ABCD-методом. Однако, преимущество данного метода заключается в учёте формы распределений. Поэтому более корректными будут результаты с большим количеством бинов.

Рассмотрим случай с количеством бинов $N_{bins}=15$. Соотношения сигнала и данных за вычетом всех остальных фонов в каждом регионе до и после фитирования с $N_{bins}=15$ представлены на рисунках 16 и 17 соответственно. Число фоновых событий от неверной идентификации адронной струи как

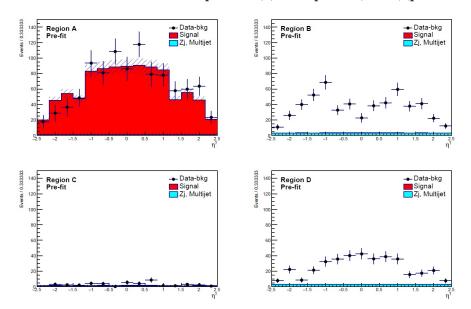


Рисунок 16 — Распределение сигнала и данных за вычетом всех остальных фонов для случая $N_{bins}=15$ до фитирования

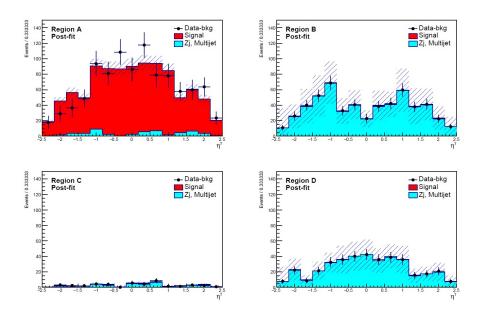


Рисунок 17 — Распределение сигнала, исследуемого фона и данных за вычетом всех остальных фонов для случая $N_{bins}=15$ после фитирования

фотона в сигнальной области А, оцененное методом максимального правдо-

бодобия с $N_{\rm bins}=15$ составляет $N_A^{jet \to \gamma}=51\pm 6,$ что так же совпадает со значением, полученным стандартным ABCD-методом.

Модель с количеством бинов $N_{\rm bins}>1$ при фитировании учитывает информацию о форме распределения, поэтому она является более достоверной. По этой причине в дальнейшем будет ипользоваться именно модель, учитывающая форму распределения сигнала и данных за вычетом фона.

Заключение

Главная цель анализа заключалась в оценке числа фоновых событий, обусловленных неверной идентификацией адронной струи как фотона в электрослабом и КХД процессах с конечным состоянием $Z(\nu\bar{\nu})\gamma jj$. В соответствии с поставленной задачей в результате данного анализа:

- \bullet получен наиболее оптимальный отбор на координатную переменную Δz для подавления фона, обусловленного конфигурацией пучка;
- оптимизированы регионы двумерного метода боковых интервалов для исследуемого процесса;
- получена оценка центрального значения фоновых событий в сигнальной области, а также оценены статистические и систематические погрешности, в результате чего получено значение $N_A^{jet \to \gamma} = 54 \pm 15 \text{(стат.)} \pm 10 \text{(сист.)};$
- начата работа над методом максимального правдоподобия и получена первичная оценка числа фоновых событый, которая состовляет $N_{jet \to \gamma} = 51 \pm 6$, что совпадает в пределах погрешностей со значением, полученным двумерным методом боковых интревалов.

В будущем планируется переоптимизировать регионы двумерного метода боковых интервалов с учетом отборов по новым переменным, продолжить работу над методом максимального правдоподобия, а также получить оценку фона от неверной идентификации струи как фотона с помощью Матричного Метода.

Список используемых источников

- 1. Smestad L. Preparing for an Unbiased Study of the $H \to \gamma \gamma$ Background with the ATLAS Experiment at LHC. 2008. URL: https://cds.cern.ch/record/1402030; Presented 2008.
- 2. Group P. D. [et al.]. Review of Particle Physics // Progress of Theoretical and Experimental Physics. 2020. Aug. Vol. 2020, no. 8. ISSN 2050-3911. eprint: https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf. URL: https://doi.org/10.1093/ptep/ptaa104; 083C01.
- 3. Collaboration A. The performance of ATLAS detector. Heidelberg: Springer, 2011. URL: https://cds.cern.ch/record/1485681; Reprinted from The European Physical Journal C (articles published between summer 2010 and spring 2011).
- 4. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider // JINST. 2008. Vol. 3. S08003.
- 5. Gleisberg T. [et al.]. Event generation with SHERPA 1.1 // Journal of High Energy Physics. 2009. Feb. Vol. 2009, no. 02. P. 007—007. ISSN 1029-8479. URL: http://dx.doi.org/10.1088/1126-6708/2009/02/007.
- 6. Alwall J. [et al.]. MadGraph 5: going beyond // Journal of High Energy Physics. 2011. June. Vol. 2011, no. 6. ISSN 1029-8479. URL: http://dx.doi.org/10.1007/JHEP06(2011)128.
- 7. Frixione S., Nason P., Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method // Journal of High Energy Physics. 2007. Nov. Vol. 2007, no. 11. P. 070—070. ISSN 1029-8479. URL: http://dx.doi.org/10.1088/1126-6708/2007/11/070.
- 8. Buckley A., Gupta D. B. Powheg-Pythia matching scheme effects in NLO simulation of dijet events. 2017. arXiv: 1608.03577 [hep-ph].

- 9. Bellm J. [et al.]. Herwig 7.0/Herwig++ 3.0 release note // The European Physical Journal C. 2016. Apr. Vol. 76, no. 4. ISSN 1434-6052. URL: http://dx.doi.org/10.1140/epjc/s10052-016-4018-8.
- 10. Buttinger W. Background Estimation with the ABCD Method. 2018. Oct. URL: https://twiki.cern.ch/twiki/pub/Main/ABCDMethod/ABCDGuide_draft180ct18.pdf.