Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное учреждение

высшего образования «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

УДК 524.35

ОТЧЁТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ТЕОРЕТИЧЕСКИЕ ОСНОВАНИЯ И КОСМОЛОГИЧЕСКИЕ ПРОЯВЛЕНИЯ МНОГОЗАРЯДНЫХ ЧАСТИЦ В МОДЕЛЯХ СОСТАВНОГО БОЗОНА ХИГГСА

Научный руководитель д.ф.-м.н., профессор

_____ М. Ю. Хлопов

Выполнил

_____Д. О. Сопин

Москва 2021

Оглавление

1	Введение						
2	Модель						
	2.1	4-ое поколение частиц					
	2.2	Сфалеронный переход					
3	Вклад	$\bar{U}\bar{U}\bar{U}$ в полную плотность энергии					
	3.1	Общий вид плотности					
	3.2	Химический потенциал $\mu_{\bar{U}R}$					
	3.3 Отношение полных плотностей анти-кластеров						
		$\bar{U}\bar{U}\bar{U}$ и барионов					
4	Анали	з результатов					
5	Заклю	чение					
Список использованных источников							

1 Введение

Часть Стандартной Модели (СМ), связанная с механизмом Хиггса, продолжает представлять значительный интерес как с точки зрения эксперимента, так и с точки зрения теоретического описания. Решение проблемы расходимости массы хиггсовского бозона, как и самой физической природы шкалы нарушения симметрии электрослабого взаимодействия связывалось с суперсимметрией, но отрицательный результат поиска суперсимметричных частиц на коллайдере может означать несуперсимметричное решение этой проблемы в моделях составного бозона Хиггса. В этом случае составляющие хиггсовского бозона могут быть заряженными и связываться в стабильные многозарядные частицы, которые, обладая также SU(2) зарядами, могут участвовать в сфалеронных переходах, устанавливавших баланс избытка этих частиц и барионной асимметрии.

В работе этого семестра такой баланс исследовался на примере нового 4-го поколения со стабильными 4-ыми нейтрино и кварком U-типа [1–3]. Получаемый избыток \bar{U} кварков обеспечивает реализацию моделей темных атомов скрытой массы Вселенной.

Так в рассматриваемой модели возникают стабильные многозарядные связанные состояния [2; 4], наиболее интересно среди которых $\bar{U}\bar{U}\bar{U}^{--}$, способное объединяться с ⁴*He* и 4-ым анти-нейтрино \bar{N} , в так называемый ANOHe (Anti-Neutrino-O-helium), претендующий на роль носителя скрытой массы [4; 5].

Важно установить, способна ли данная составная частица обеспечить необходимую плотность скрытой массы во Вселенной. Представленная работа посвящена поиску ответа на этот вопрос.

2 Модель

2.1 4-ое поколение частиц

Свойства новых частиц в значительной мере ограничены экспериментом. По этой причине массы частиц, составляющих четвёртое поколение (двух кварков U, D и двух лептонов E, N) должны быть достаточно велики. Так, предполагается, что $m_D \sim m_U \sim m_E \sim 1$ ТэВ, $m_N \sim 50$ ГэВ [6]. В данной работе рассматривается случай $m_D > m_U$.

Имеющие значения для дальнейшего рассмотрения свойства новых

Частица	Macca	Заряд q	Заряд у	Новое лептонное	Новое барионное
				ЧИСЛО	ЧИСЛО
U	~ 1 ТэВ	$\frac{2}{3}$	$-\frac{1}{3}$	0	1
D	~ 1 ТэВ	$-\frac{1}{3}$	$-\frac{1}{3}$	0	1
Е	~ 1 ТэВ	-1	1	1	0
N	~ 50 ГэВ	0	1	1	0

Таблица 1: Основные свойства частиц 4-ого поколения.

частиц приведены в таблице 1. Стоит отметить, что 4-ое поколение существенно отличается от 3-х известных наличием у частиц нового заряда y, соответствующего дополнительной U(1) симметрии. Соотношение его величин, может быть определено из условий отсутствия $Z - \gamma - y$ и Z - y - yаномалий, а также наличия распадов по слабому взаимодействию (переходов D - U и E - N) [1; 3; 4].

Предположение о наличии закона сохранения у-заряда позволяет говорить о стабильности легчайшего кварка U и нейтрино N. Однако их наличие во Вселенной ограничено не наблюдаемостью UUUNee - частицы, которая выглядела бы на экспериментах как аномальный гелий. Потому гораздо более интересно связанное состояние античастиц $\bar{U}\bar{U}\bar{V}\bar{N}He$ - ANOHe, избегающее подобной аналогии [5]. Введу общей электро- и унейтральности, а также высокой массы ANOHe является кандидатом на роль носителя скрытой массы.

Необходимый для реализации такого сценария избыток анти-кластеров $\bar{U}\bar{U}\bar{U}$ мог сформироваться на ранних стадиях эволюции Вселенной [7]. Здесь наблюдается полная аналогия по отношению к электрослабому формированию барионной асиметрии.

Ещё одним важным с теоретической точки зрения следствием сохранения у-заряда является необходимость рассмотрения барионного и лептонного чисел новых частиц отдельно от аналогичных чисел CM.

2.2 Сфалеронный переход

Избыток анти-кластеров $\bar{U}\bar{U}\bar{U}$ мог сформироваться в ранней Вселенной за счёт сфалеронных переходов [8]. Сфалерон - статическое решение уравнений электро-слабого поля в рамках СМ. Оно соответствует седловой точке функционала энергии в конфигурационном пространстве. Сама седловина представляет собой потенциальный барьер, разделяющий топологически неэквивалентные вакуумы [9; 10].

Туннелирование через такой барьер должно сопровождаться в СМ нарушением законов сохранения барионного и лептонного чисел [11]. В настоящее время такой процесс крайне маловероятен

 $\left(\sigma_{sph} \propto \exp\left(-\frac{4\pi}{\alpha_W}\right) \sim 10^{-170}\right)$, однако при высоких температурах ранней Вселенной, подавление должно сниматься [12; 13]. Так сфалеронными переходами нельзя пренебречь вплоть до температур порядка 100-300 ГэВ.

Такие процессы нарушают лишь сумму полного лептонного и барионного чисел. Их разница остаётся постоянной величиной. Также, в следствие выбранной модели, на сфалеронный переход должны быть наложены условия электро- и у-нейтральности.

3 Вклад $\bar{U}\bar{U}\bar{U}$ в полную плотность энергии

3.1 Общий вид плотности

Одним из критериев, позволяющих судить об реалистичности рассматриваемой модели, является способность ANOHe обеспечить наблюдаемую плотность скрытой массы Вселенной. Можно учесть, что масса антикластера $\bar{U}\bar{U}\bar{U}$ составляет более 95% от массы всего соединения, а потому критерий можно переписать в виде $\Omega_{\bar{U}\bar{U}\bar{U}} \approx \Omega_{DM}$.

По определению, $\Omega_{\bar{U}\bar{U}\bar{U}} = \frac{m_{\bar{U}\bar{U}\bar{U}}n_{\bar{U}\bar{U}\bar{U}}}{\rho_c}$. Здесь ρ_c - критическая плотность Вселенной, $n_{\bar{U}\bar{U}\bar{U}}$ - концентрация анти-кластеров. Последняя величина сильно зависит от температуры, при которой сфалеронные переходы перестают быть заметны. Для фермионов, коими являются все рассматриваемые частицы:

$$n = \frac{1}{6}gT^2\mu \ \sigma\left(\frac{m}{T}\right),\tag{1}$$

где g = 2 - количество степеней свободы фермиона, μ - его химический потенциал, а $\sigma\left(\frac{m}{T}\right)$ - функция, определённая как [7; 14]

$$\sigma(z) = \frac{6}{4\pi^2} \int_0^\infty dx \ x^2 \cosh^{-2}\left(\frac{1}{2}\sqrt{x^2 + z^2}\right).$$
(2)

Для $\bar{U}\bar{U}\bar{U}: \mu_{\bar{U}\bar{U}\bar{U}} = 3(\mu_{\bar{U}L} + \mu_{\bar{U}R}) = 6\mu_{\bar{U}R} - 3\mu_0$. Химическим потенциалом бозона Хиггса μ_0 можно пренебречь, так как все процессы рассматриваются после электрослабого фазового перехода.

Таким образом, можем записать выражение для полной плотности анти-класстера $\bar{U}\bar{U}\bar{U}$:

$$\Omega_{\bar{U}\bar{U}\bar{U}} \approx 6 \frac{m_U}{\rho_c} T^2 \sigma_{\bar{U}\bar{U}\bar{U}} \mu_{\bar{U}R}.$$
(3)

3.2 Химический потенциал $\mu_{\bar{U}R}$

Химический потенциал $\mu_{\bar{U}R}$, стоящий в выражении (3) является функцией масс частиц и температуры прекращения сфалеронных переходов. Точный вид функции можно найти, используя условие наложенное на химические потенциалы сфалеронным переходом, записывающееся следующим образом:

$$3(\mu_{uL} + 2\mu_{dL}) + \mu + (\mu_{\bar{U}R} + 2\mu_{\bar{D}R}) + \mu'_R = 0.$$
(4)

Здесь $\mu = \sum_{i=1}^{3} \mu_{\nu_i L}$ - сумма химических потенциалов нейтрино CM; μ'_R , $\mu_{\bar{U}R}$, $\mu_{\bar{D}}$ и μ_{uL} , μ_{dL} - химические потенциалы \bar{N} , \bar{U} , \bar{D} и кварков CM соответственно. Также предполагается, что $\mu_u = \mu_c = \mu_t$ и $\mu_d = \mu_s = \mu_b$.

Для того, чтобы выразить из уравнения (4) необходимый для рассчёта потенциал, следует воспользоваться выражениями для плотностей лептонных и барионных чисел.

Плотность барионного числа СМ определяется как

$$B \equiv \frac{n_B - n_{\bar{B}}}{\frac{gT^2}{6}},\tag{5}$$

где $\frac{6}{gT^2}$ - нормировочный коэффициент. Далее следует расписать $(n_B - n_{\bar{B}})$ по (1). При этом можно учесть, что по сравнению с температурой прекращения сфалеронных переходов, массы всех частиц СМ за исключением t-кварка малы, а потому могут быть положены равными нулю. Тогда получаем [11]:

$$B = (2 + \sigma_t)(\mu_{uL} + \mu_{uR}) + 3(\mu_{dL} + \mu_{dR}) =$$

= (10 + 2\sigma_t)\mu_{uL} + 6\mu_W. (6)

Аналогично для плотности лептонного числа СМ:

$$L = \Sigma(\mu_{\nu_{i}L} + \mu_{\nu_{i}R} + \mu_{iL} + \mu_{iR}) =$$

= 4\mu + 6\mu_{W}. (7)

Массами частиц 4-го поколения нельзя пренебречь, потому выражения для плотности новых барионного и лептонного чисел имеют вид:

$$-FB = \sigma_U(\mu_{\bar{U}L} + \mu_{\bar{U}R}) + \sigma_D(\mu_{\bar{D}L} + \mu_{\bar{D}R}) =$$
$$= 2(\sigma_U + \sigma_D)\mu_{\bar{U}R} - 2\sigma_D\mu_W$$
(8)

$$-L' = \sigma_E(\mu_{\bar{E}L} + \mu_{\bar{E}R}) + \sigma_N(\mu'_L + \mu'_R) = = 2(\sigma_E + \sigma_N)\mu'_R - 2\sigma_E\mu_W$$
(9)

Зарядовые плотности, вообще говоря, могут быть записаны аналогичным образом:

$$Q = 2(2 + \sigma_t)(\mu_{uL} + \mu_{uR}) - 3(\mu_{dL} + \mu_{dR}) - - 2\sigma_U(\mu_{\bar{U}L} + \mu_{\bar{U}R}) + \sigma_D(\mu_{\bar{D}L} + \mu_{\bar{D}R}) - - 3(\mu_{iL} + \mu_{iR}) + \sigma_E(\mu_{\bar{E}L} + \mu_{\bar{E}R}) - 4\mu_W - 2\mu_-$$
(10)

$$Y = \sigma_U(\mu_{\bar{U}L} + \mu_{\bar{U}R}) + \sigma_D(\mu_{\bar{D}L} + \mu_{\bar{D}R}) - \sigma_E(\mu_{\bar{E}L} + \mu_{\bar{E}R}) - \sigma_N(\mu_{\bar{N}L} + \mu_{\bar{N}R})$$
(11)

Однако, если учесть условия электро- и у-нейтральности, получим уравнения, связывающие химические потенциалы частиц:

$$(1+2\sigma_t)\mu_{uL} + (\sigma_D - 2\sigma_U)\mu_{\bar{U}R} - \mu + \sigma_E\mu'_R - (9 + \sigma_E + \sigma_D)\mu_W = 0 \quad (12)$$

$$(\sigma_U + \sigma_D)\mu_{\bar{U}R} - (\sigma_E + \sigma_N)\mu'_R + (\sigma_E - \sigma_D)\mu_W = 0$$
(13)

Полученная система может быть сведена к единственному условию

$$4B + s_1 F B + s_2 \mu_{\bar{U}R} = 0, \tag{14}$$

где $s_1 = -\frac{2}{\sigma_D} \left(14 + \frac{\sigma_D (2\sigma_E + 1) - \sigma_E + \sigma_N (\sigma_E + \sigma_D))}{\sigma_E + \sigma_N} \right),$ $s_2 = \left(3(1 + \sigma_D - 3\sigma_U) + \left(\frac{\sigma_U}{\sigma_D} + 1 \right) \left(-11 + \frac{\sigma_E (1 - \sigma_N)}{\sigma_E + \sigma_N} \right) \right)$ - зависящие от масс частиц параметры.

3.3 Отношение полных плотностей анти-кластеров $\bar{U}\bar{U}\bar{U}$ и барионов

Плотности барионных чисел можно связать, используя определения полных плотностей анти-кластеров $\bar{U}\bar{U}\bar{U}$ и барионов CM:

$$\frac{\Omega_{\bar{U}\bar{U}\bar{U}}}{\Omega_b} = \frac{FB}{B} \frac{m_{\bar{U}\bar{U}\bar{U}}}{m_p} \tag{15}$$

Таким образом, окончательная формула имеет вид:

$$\Omega_{\bar{U}\bar{U}\bar{U}} = -144\Omega_b \frac{m_U}{m_p} \left(\frac{g}{\sigma_{\bar{U}\bar{U}\bar{U}}} s_2 + 12s_1\right)^{-1} \tag{16}$$

Плотность Ω_b после остановки сфалеронных процессов представляет собой известную постоянную величину, а значит правая часть равенства является функцией лишь от масс частиц 4-го поколения.

4 Анализ результатов

Как видно из формулы (16), полная плотность $\bar{U}\bar{U}\bar{U}$ во Вселенной зависит от масс частиц 4-го поколения весьма сложным образом. Потому для исследования данной зависимости имеет смысл использовать некоторые дополнительные приближения.

Наиболее "простое"из них - приближение равных масс: $m_U = m_D = m_E$, $m_N = 50$ ГэВ. Из явного вида функции (2) легко найти, что оно оправдано при разнице масс не более ~ 100 ГэВ. В случае нарушения данного условия, ошибка при нахождении численных значений функции σ будет превышать 5% от максимального её значения ($\sigma(0) = 1$).

Полученная в приближении равных масс зависимость плотности $\Omega_{\bar{U}\bar{U}\bar{U}}$ от массы стабильного кварка 4-го поколения m_U для разных температур

Рисунок 1 – Зависимость полной плотности $\bar{U}\bar{U}\bar{U}$ Вселенной от m_U . Штриховая, пунктирная и сплошная линии соответствуют T = 200; 250; 300 ГэВ. Горизонтальная линия отображает наблюдаемую полную плотность скрытой массы во Вселенной. Левая панель: $m_U = m_D = m_E, m_N = 50$ ГэВ. Правая панель: $m_U = m_E, m_D - m_U = 200$ ГэВ, $m_N = 50$ ГэВ.

прекращения сфалеронных переходов Т изображена на левой панели рис. 1. Легко видеть, что ANOHe способен обеспечить требуемую плотность скрытой массы во Вселенной лишь вблизи нижнего и верхнего пределов изменения параметров модели соответственно: $m_U \approx 1000$ ГэВ и $T \approx 300$ ГэВ.

Аналогичный график для случая $m_D - m_U = 200$ ГэВ показан на правой панели рис. 1. Линии на нём имеют тот же характер, но смещены ещё дальше в сторону малых масс новых кварков.

5 Заключение

Рассматриваемая модель, вводящая тяжёлые частицы 4-го поколения, несущие новый у-заряд, имеет интересные космологические следствия. Возникающее в её рамках стабильное связанное состояние $\bar{U}\bar{U}\bar{V}\bar{N}He$, является кандидатом на роль носителя скрытой массы.

Неоспоримым достоинством модели является то, что данное соединение способно обеспечить всю наблюдаемую плотность Ω_{DM} . Однако тот факт, что это возможно лишь при предельных значениях параметров, представляет собой её недостаток.

Список используемых источников

- Khlopov M. New symmetries in microphysics, new stable forms of matter around us. — 2006. — July.
- Belotsky K., Khlopov M., Shibaev K. Stable quarks of the 4th family? 2008.
- Effects of new long-range interaction: Recombination of relic Heavy neutrinos and antineutrinos / K. Belotsky [et al.] // Grav.Cosmol. 2005. Apr. Vol. 11. P. 27–33.
- Belotsky K., Khlopov M., Shibaev K. Composite Dark Matter and its Charged Constituents // Grav.Cosmol. — 2006. — Apr. — Vol. 12. — P. 93–99.
- Belotsky K., Khlopov M., Shibaev K. Stable matter of 4th generation: hidden in the universe and close to detection? // Particle Physics at the Year of 250th Anniversary of Moscow University. — 2006. — Окт.
- 6. Possible manifestations of the existence of a fourth-generation neutrino / Y. A. Golubkov [и др.] // Journal of Experimental and Theoretical Physics Letters. — 1999. — Март. — Т. 69, № 6. — С. 434—440.
- 7. Gudnason S. B., Kouvaris C., Sannino F. Dark matter from new technicolor theories // Physical Review D. 2006. Нояб. Т. 74, № 9.
- Chaudhuri A., Khlopov M. Balancing Asymmetric Dark Matter with Baryon Asymmetry by Sphaleron Transitions // Physical Sciences Forum. – 2021. – Φевр. – Т. 2, № 1. – С. 41.
- Manton N. S. Topology in the Weinberg-Salam Theory // Phys. Rev. D. - 1983. - T. 28. - C. 2019.
- Klinkhamer F. R., Manton N. S. A saddle-point solution in the Weinberg-Salam theory // Physical Review D. - 1984. - T. 30. - C. 2212-2220.

- Harvey, Turner. Cosmological baryon and lepton number in the presence of electroweak fermion-number violation. // Physical review. D, Particles and fields. - 1990. - T. 42 10. - C. 3344-3349.
- 12. Горбунов Д. С., Рубаков В. А. Введение в теорию ранней Вселенной: Теория горячего Большого Взрыва. М. : ЛКИ, 2008.
- Рубаков В. А., Шапошников М. Е. Электрослабое несохранение барионного числа в ранней Вселенной и в столкновениях частиц при высоких энергиях // Усп. физ. наук. 1996. Т. 166, № 5. С. 493—537.
- 14. Khlopov M. Y., Kouvaris C. Strong interactive massive particles from a strong coupled theory // Physical Review D. 2008. Mapt. T. 77, № 6.