ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ТЕОРЕТИЧЕСКИЕ ОСНОВАНИЯ И КОСМОЛОГИЧЕСКИЕ ПРОЯВЛЕНИЯ МНОГОЗАРЯДНЫХ ЧАСТИЦ В МОДЕЛЯХ СОСТАВНОГО БОЗОНА ХИГГСА

Научный руководитель

д.ф.-м.н., профессор

М. Ю. Хлопов

Выполнил

Д. О. Сопин

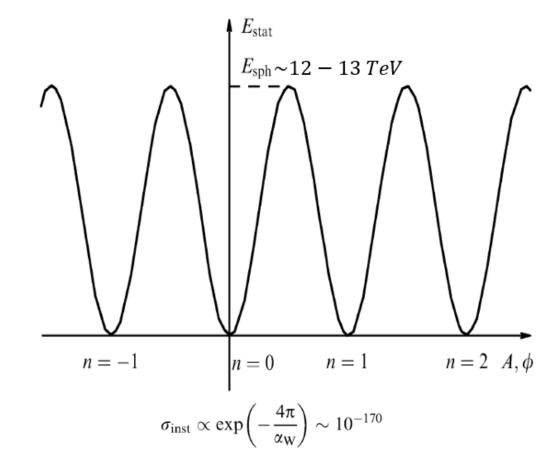

Частица	Macca	Заряд q	Заряд у	Новое лептонное число	Новое барионное число
U	~ 1 ТэВ	$\frac{2}{3}$	$-\frac{1}{3}$	0	1
D	~ 1 ТэВ	$-\frac{1}{3}$	$-\frac{1}{3}$	0	1
Е	~ 1 ТэВ	-1	1	1	0
N	~ 50 ГэВ	0	1	1	0

Таблица 1: Основные свойства частиц 4-ого поколения.

Сфалеронный переход

• СФАЛЕРОН (электро-слабый сфалерон) — это квазиклассическое статическое (не зависящее от времени) решение уравнений электро-слабого поля Стандартной Модели.

$$\Delta N_e = \Delta N_\mu = \Delta N_ au = rac{1}{3} \Delta B$$
 $(B-L)$ - сохраняющаяся величина $(B+L)$ - НЕ сохраняющаяся величина

Уравнения

$$\begin{split} &\Omega_{\bar{U}\bar{U}\bar{U}}\approx 6\frac{m_{U}}{\rho_{c}}T^{2}\sigma_{\bar{U}\bar{U}\bar{U}}\mu_{\bar{U}R}.\\ &3(\mu_{uL}+2\mu_{dL})+\mu+(\mu_{\bar{U}R}+2\mu_{\bar{D}R})+\mu_{R}'=0.\\ &B=(10+2\sigma_{t})\mu_{uL}+6\mu_{W}.\\ &L=4\mu+6\mu_{W}.\\ &-FB=2(\sigma_{U}+\sigma_{D})\mu_{\bar{U}R}-2\sigma_{D}\mu_{W}\\ &-L'=2(\sigma_{E}+\sigma_{N})\mu_{R}'-2\sigma_{E}\mu_{W}\\ &(1+2\sigma_{t})\mu_{uL}+(\sigma_{D}-2\sigma_{U})\mu_{\bar{U}R}-\mu+\sigma_{E}\mu_{R}'-(9+\sigma_{E}+\sigma_{D})\mu_{W}=0\\ &(\sigma_{U}+\sigma_{D})\mu_{\bar{U}R}-(\sigma_{E}+\sigma_{N})\mu_{R}'+(\sigma_{E}-\sigma_{D})\mu_{W}=0 \end{split}$$

$$\frac{\Omega_{\bar{U}\bar{U}\bar{U}}}{\Omega_b} = \frac{FB}{B} \frac{m_{\bar{U}\bar{U}\bar{U}}}{m_p}$$

Вклад $\overline{U}\overline{U}\overline{U}$ полную плотность энергии

$$\Omega_{\bar{U}\bar{U}\bar{U}} = -144\Omega_b \frac{m_U}{m_p} \left(\frac{g}{\sigma_{\bar{U}\bar{U}\bar{U}}} s_2 + 12s_1 \right)^{-1}$$

$$s_1 = -\frac{2}{\sigma_D} \left(14 + \frac{\sigma_D(2\sigma_E + 1) - \sigma_E + \sigma_N(\sigma_E + \sigma_D)}{\sigma_E + \sigma_N} \right)$$

$$s_2 = \left(3(1 + \sigma_D - 3\sigma_U) + \left(\frac{\sigma_U}{\sigma_D} + 1 \right) \left(-11 + \frac{\sigma_E(1 - \sigma_N)}{\sigma_E + \sigma_N} \right) \right)$$

$$\sigma(z) = \frac{6}{4\pi^2} \int_0^\infty dx \ x^2 \cosh^{-2} \left(\frac{1}{2} \sqrt{x^2 + z^2} \right)$$

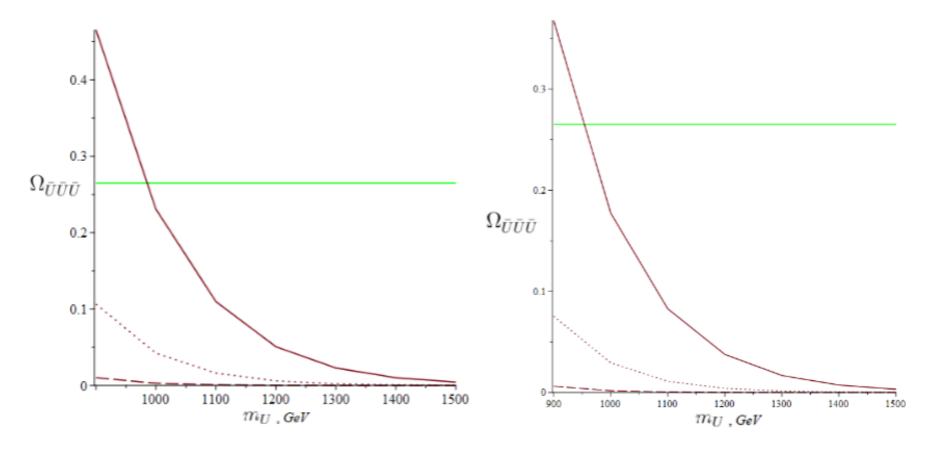


Рисунок 1 — Зависимость полной плотности $\bar{U}\bar{U}\bar{U}$ Вселенной от m_U . Штриховая, пунктирная и сплошная линии соответствуют $T=200;\ 250;\ 300$ ГэВ. Горизонтальная линия отображает наблюдаемую полную плотность скрытой массы во Вселенной. Левая панель: $m_U=m_D=m_E, m_N=50$ ГэВ. Правая панель: $m_U=m_E, m_D-m_U=200$ ГэВ, $m_N=50$ ГэВ.