<u>Исследование возможности снятия ограничения на первичные черные дыры</u> по белым карликам в случае кластеризации

Введение

Первичные черные дыры (ПЧД) могут составлять значительную часть темной материи во Вселенной. Кластеризация ПЧД может существенно повлиять на ограничения их плотности. Мы предлагаем аналитическое рассмотрение кластеризации ПЧД. В случае если ПЧД образуют кластеры, они могут ослабить или снять существующие ограничения на плотность равномерно распределенных ПЧД, что позволит ПЧД стать жизнеспособными кандидатами на темную материю.

Задача

Оценить возможность снятия ограничения на плотность ПЧД по белым карликам (БК) в скоплениях в случае кластеризации.

Первый этап оценки проводился при следующих параметрах: Радиус кластера ПЧД R=1 пк = $3*10^{18}$ см, общая масса кластера $M=10^3$ $M_\odot=2*10^{36}$ г. Для БК использовались стандартные значения: $M_{\rm БK}=1$ M_\odot , $R_{\rm БK}=6400$ км. Для получения гравитационного сечения $\sigma_{\Gamma 3}$ захвата БК использовалась формула:

$$\sigma_{\rm BK} = 4\pi R_{\rm BK}^2 \cdot \left(\frac{v_2}{v_{\rm m}}\right)^2,\tag{1}$$

где v_2 – вторая космическая скорость, v_∞ – скорость на бесконечно большом расстоянии, $R_{\rm БK}$ – радиус белого карлика. Таким образом, было получено значение $\sigma_{\rm БK}$ = 5.4*10¹¹ км² для БК.

Следующая важная для нашей задачи величина — $N_{\text{БК}}$ — количество ПЧД, с которыми провзаимодействует (т.е. захватит) БК при пролете через кластер. Значение $N_{\text{БК}}$ может быть получено следующим выражением:

$$N = \sigma_{\rm BK} \cdot d \cdot n, \tag{2}$$

Где $\sigma_{\rm БK}$ – гравитационное сечение захвата БК, $d=2{\rm R}$ – диаметр кластера, n – концентрация ПЧД внутри кластера. Подставив заданные в условии величины, получаем следующее:

$$N = \frac{\sigma M}{2mR^2},\tag{3}$$

где m — масса ПЧД, принадлежащая промежутку [10^{18} ; 10^{24}] г.

Таблица 1

т, г	N
10^{18}	6*10 ⁸
10 ¹⁹	6*10 ⁷
10^{20}	6*10 ⁶
10^{21}	6*10 ⁵

Логарифмируя значения из таблицы 1, получаем:

Таблица 2

log(m), г	log(N)
18	9
19	8
20	7
21	6

По полученным данным можем построить график в логарифмическом масштабе

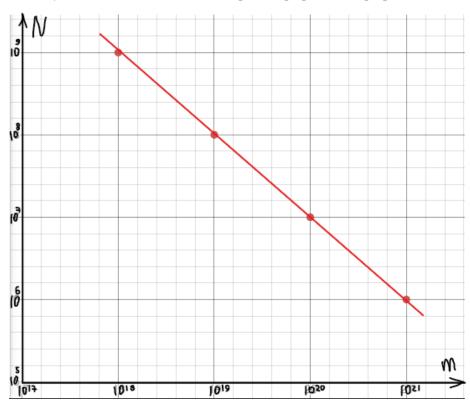


Рис.1. Зависимость количества пойманных ПЧД белым карликом при пролете через кластер с параметрами R=1 пк $=3*10^{18}$ см, $M=10^3$ $M_{\odot}=2*10^{36}$ г от массы ПЧД.

Следующим естественным предположением для усовершенствования модели будет изменение параметров кластера следующим образом: общая масса кластера $M_1 = 10^{-3}~M_{\odot} = 2*10^{36}~\Gamma,~M_2 = 1$ $M_{\odot},~M_3 = 10^4~M_{\odot},~pадиус~кластера~\Pi^4Д~R = 1\pi\kappa^*(\frac{M}{M_{\odot}})^{\frac{1}{3}} = 3*10^{18}~cm^*(\frac{M}{M_{\odot}})^{\frac{1}{3}}.$

Аналогичным образом, получаем:

Таблица 3

т, г	N_1	N_2	N_3
10^{18}	10^{6}	6*10 ⁷	10 ⁹
10^{19}	10^{5}	6*10 ⁶	10^{8}
10^{20}	10^{4}	6*10 ⁵	10^{7}
10^{21}	10^{3}	6*10 ⁴	10^{6}
10^{22}	10^{2}	6*10 ³	10^{5}
10^{23}	10	6*10 ²	10^{4}
10^{24}	1	6*10 ¹	10^{3}
M	10 ⁻³ M _☉	1 M _☉	$10^4~{\rm M}_{\odot}$

Таблица 4

т, г	N_1	N_2	N ₃
18	6	7.8	9
19	5	6.8	8
20	4	5.8	7
21	3	4.8	6
22	2	3.8	5
23	1	2.8	4
24	0	1.8	3
M	10 ⁻³ M _☉	1 M _☉	$10^4\mathrm{M}_\odot$

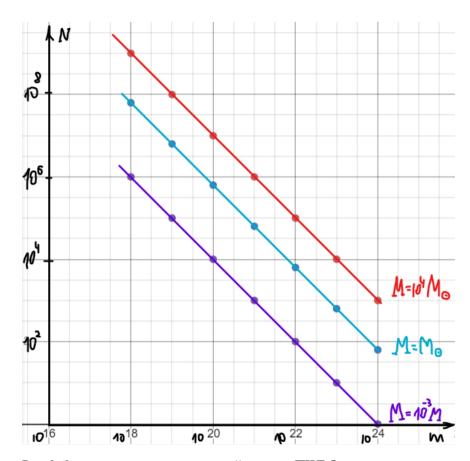


Рис.2. Зависимость количества пойманных ПЧД белым карликом при пролете через кластер с параметрами $R=1\pi\kappa=3*10^{18}$ см, $M_1=10^{-3}$ M_{\odot} , $M_2=1$ M_{\odot} , $M_3=10^4$ M_{\odot} , от массы ПЧД.

Следующий этап исследования заключается в построении схожей модели, но в масштабах галактики. Параметры галактики: $\mathbf{M} = 5*10^{12} \,\mathrm{M}_{\odot}$, $\mathbf{R} = 100 \,\mathrm{kn}$ к. Поскольку физика процесса та же, то и формулы сильно отличаться не будут. Таким образом, имеем:

$$\sigma_{\text{KJ}} = 4\pi R_{\text{KJ}}^2 \cdot ((\frac{v_2}{v_{\infty}})^2 + 1),$$
 (4)

где v_2 — вторая космическая скорость, v_∞ — скорость на бесконечно большом расстоянии, $R_{\rm кл}$ — радиус кластера ПЧД. Таким образом, было получено значение сечение гравитационного захвата кластера $\sigma_{\rm кл} = 5.24*10^{38}\,{\rm cm}^2$. В масштабах галактики отношение $(\frac{v_2}{v_\infty})^2$ стремится к нулю, поэтому формула упрощается:

$$\sigma_{\kappa\pi} = 4\pi R_{\kappa\pi}^2 \tag{5}$$

Используя формулу (2), получим значение N – количество кластеров, в которые залетит ПЧД при пролете сквозь галактику по диаметру: N = 1,5 для массы кластера M_3 = 10^4 M_{\odot} -- наиболее интересный для нас вариант.

Для того, чтобы посчитать статистическую вероятность можно разделить полученное значение N на общее количество кластеров N_d , лежащих вдоль траектории полета (на диаметре галактики) БК.

После несложных подсчетов получаем отношение: $p = \frac{1.5}{46415} = 3*10^{-5}$ — вероятность попадания БК в кластер при пролете вдоль диагонали галактики.

Заключение

В данной работе "Исследование возможности снятия ограничения на первичные черные дыры по белым карликам в случае кластеризации" получены количественные оценки взаимодействия БК с кластером ПЧД. Данные занесены в таблицу 1. Значения логарифмов чисел из таблицы 1 занесены в таблицу 2. На ее основании был построен график зависимости количества пойманных ПЧД белым карликом при пролете через кластер с параметрами R = 1 пк, $M = 10^3 \, M_{\odot}$ от массы ПЧД (рисунок 1).

Развивая мысль, начальные параметры кластера были изменены в пользу физической достоверности. Следуя алгоритму из предыдущего этапа, были получены таблицы 3 и 4. На их основании был построен график зависимости количества пойманных ПЧД белым карликом при пролете через кластер с параметрами R=1пк, $M_1=10^{-3}$ M_{\odot} , $M_2=1$ M_{\odot} , $M_3=10^4$ M_{\odot} , от массы ПЧД. Для того, чтобы показать, как меняется характер графика, на одной координатной плоскости изображено 3 линии, соответствующие разным массам кластеров.

После этого была сделана оценка гравитационного сечения, а затем и количества кластеров, в которые залетит БК в масштабах галактики при пролете вдоль диаметра. Используя полученные данные, была получена вероятность попадания БК в кластер. Порядок величины -10^{-5} .

Полученные результаты свидетельствуют о том, что в случае нахождения БК внутри кластера он достоверно захватит ПЧД, как следствие, будет уничтожен. Но в то же время вероятность попадания в кластер мала. Таким образом, ограничение на плотность распространения ПЧД можно снять, заменив его на вероятность попадания в кластер.

Литература:

- 1. Bernard Carr, Kazunori Kohri, Yuuiti Sendouda, Jun'ichi Yokoyama. e-Print: 2002.12778 [astro-ph.CO]
- 2. Fabio Capela, Maxim Pshirkov, Peter Tinyakov. e-Print: 1301.4984 [astro-ph.CO]
- 3. Capela F., Pshirkov M., Tinyakov P. Constraints on primordial black holes as dark matter candidates from star formation // Phys. Rev. D. 2013. Vol. 87, no. 2. P. 023507. arXiv:astro-ph.CO/1209.6021.
- Capela F., Pshirkov M., Tinyakov P. Constraints on primordial black holes as dark matter candidates from capture by neutron stars // Phys. Rev. D. 2013. Vol. 87, no. 12. P. 123524. arXiv:astroph.CO/1301.4984
- 5. Capela F., Pshirkov M., Tinyakov P. A comment on" Exclusion of the remaining mass window for primordial black holes ...", arXiv:1401.3025 // ArXiv:e-prints. 2014. arXiv:astro-ph.CO/1402.4671.
- 6. Konstantin M. Belotsky, Vyacheslav I. Dokuchaev, Yury N. Eroshenko, Ekaterina A. Esipova, Maxim Yu. Khlopov et al. Clusters of primordial black holes (Jul 17, 2018). Eur.Phys.J.C 79 (2019) 3, 246. e-Print: 1807.06590 [astro-ph.CO]
- 7. Paolo Pani, Abraham Loeb. Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter (Jan 13, 2014). JCAP 06 (2014) 026. e-Print: 1401.3025 [astro-ph.CO]