Министерство науки и высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ» (НИЯУ «МИФИ»)

УДК 539.17

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

МИКРОСКОПИЧЕСКАЯ СТРУКТУРА ДЕФОРМИРОВАННЫХ АТОМНЫХ ЯДЕР

Научный руководитель д-р физ.-мат. наук, проф.

подпись, дата

А.Л. Барабанов

Исполнитель темы студент группы Б19-102

подпись, дата

Д.А. Ситьков

Москва 2021

Оглавление

1	Вве	дение		3				
2	Задача							
	2.1	Метод	цисследования	4				
		2.1.1	Простейшая модель атомного ядра	4				
		2.1.2	Постановка задачи	5				
		2.1.3	Аналитическое рассмотрение	7				
	2.2	Резули	ътат	8				
		2.2.1	Коэффициент поверхностного натяжения	10				
\mathbf{A}	При	іложеі	ния	13				
	A.1	Прило	жение 1	13				
Cı	писо	к лите	ратуры	19				

Введение

Как известно, атомные ядра состоят из нейтронов и протонов, поэтому у них, как у атомов, есть своя микроскопическая структура.

Экспериментальные данные показывают, что в отличие от атомов форма ядра может отличаться от сферической (быть деформированной), даже если ядро находится в основном состоянии.

Тяжёлые ядра могут разделяться на два осколка как спонтанно, так и под воздействием, например, падающих нейтронов. В процессе деления ядро значительно деформируется подобно капле жидкости [1, Гл. 4, §2], которая также может разделяться на более мелкие капли. Можно предположить, что должна существовать связь между микроскопической структурой ядра и его деформацией.

Цель данной работы — установить эту связь в рамках простейшей оболочечной модели ядра [2, Гл. 7] — аналогичной электронным оболочкам.

Задача

2.1 Метод исследования

2.1.1 Простейшая модель атомного ядра

В рамках оболочечной модели ядро представляет собой систему из N нейтронов и Z протонов, A = N + Z — массовое число ядра. Предполагается, что нейтроны и протоны не взаимодействуют друг с другом (считаем протоны незаряженными) и находятся в связанных состояниях в потенциальном поле. В данной работе рассматривается потенциал вида трёхмерного потенциального «ящика» глубиной U_0 .

$$U(x, y, z) = \begin{cases} -U_0, & 0 < x < a, & 0 < y < b, & 0 < z < c \\ 0, & \text{в остальных случаях} \end{cases}$$
(2.1)

Случай a=b=cсоответствует недеформированному ядру, а при $a\neq b$ модель описывает деформированное ядро (далее рассматриваем процесс деформации для которого a=c) .

Примем, что нуклоны обладают одинаковой массой m, а глубина U_0 потенциальной ямы настолько велика, что потенциал можно рассматривать как яму с бесконечно высокими стенками.

В таком случае энергии стационарных одночастичных состояний определяются формулой

$$E_{ijk} = \frac{\pi^2 \hbar^2}{2mb^2} i^2 + \frac{\pi^2 \hbar^2}{2ma^2} (j^2 + k^2), \qquad (2.2)$$

где i, j и k — натуральные числа (рассматриваются уровни с $i^2 + j^2 + k^2 < 40$).

Каждое стационарное состояния нейтрона или протона задаётся состоянием $|ijks_z\rangle$ с четырьмя соответствующими квантовыми числами, где $s_z = +0,5$ или -0,5 — проекция спина частицы на ось z.

2.1.2 Постановка задачи

В данной работе рассматривается модель тяжёлого ядра с массовым числом A = 240, нуклонным распределением в (120n + 120p).

Исследуются зависимости суммарной энергии нескольких микроскопических конфигураций ядра по мере роста деформации области потенциальной ямы: начиная от недеформированного состояния, что соответствует кубическому виду потенциального «ящика», заканчивая параллелепипедом, одно из измерений которого вдвое больше двух равных других.

Данная задача является версией задачи, рассматриваемой в [3], где исследовались 60 бесспиновых частиц, помещенных в такой же потенциальный «ящик», и где было изучено изменение распределения частиц по одночастичным состояниям (возможный переход системы, описываемой одной кривой суммарной энергии ядра в зависимости от деформации этого ядра, к другой кривой) при деформации «ящика».

Здесь же учитываются значения спинов частиц при составлении выделенного состояния системы, а задача ограничена рассмотрением нескольких кривых суммарной энергий ядра.

Рисунок 2.1 — Параметризация деформации потенциального «ящика». В начале деформации $a = b = c = a_0$, в конце процесса — $d = 2^{-1/3}a_0$.

Следуя подходу, реализованному в [3], была произведена аналогичная параметризация границ потенциальной ямы в зависимости от $\alpha \in [0; \alpha_0 = \frac{2}{3} \ln 2]$ — степени деформации ямы.

Уравнения

$$a = a_0 e^{-\alpha/2},$$
$$b = a_0 e^{\alpha},$$
$$c = a_0 e^{-\alpha/2}$$

удовлетворяют условию постоянства объёма «ящика»

$$abc = a_0^3.$$

Соответствующие энергии одночастичных состояний имеют вид

$$E_{ijk}(\alpha) = \frac{\pi^2 \hbar^2}{2ma_0^2} \left\{ \frac{i^2}{e^{2\alpha}} + (j^2 + k^2) e^{\alpha} \right\}$$
(2.3)

Согласно [1, Гл. 1, §9] объём рассматриваемого ядра можно принять равным $\mathcal{V}_{\mathfrak{g}} = \frac{4}{3}\pi r_0^3 A$. Взяв $mc^2 = 939,57$ МэВ — энергия покоя нейтрона, параметр $r_0 = 1,2$ фм, массовое число A = 240, найдём величину a_0 ребра куба, объём $\mathcal{V}_{\kappa} = a_0^3$ которого равен объёму $\mathcal{V}_{\mathfrak{g}}$ ядра, и вычислим размерный множитель формулы (2.3):

$$a_0 = 12,02 \, \text{фм},$$

 $\frac{\pi^2 \hbar^2}{2ma_0^2} = 1,41 \, \text{МэB}.$

Каждое многочастичное состояние $|\psi\rangle$ будем описывать набором $\{n_{\lambda}\}$ чисел заполнения, где число $n_{\lambda} = 0$ или 1 (соответственно, состояние свободное или занятое одним протоном, нейтроном) и $\lambda = \overline{1, 174}$ — индекс одночастичного состояния.

Для краткости будем представлять набор чисел заполнения в форме

$$\begin{pmatrix} 1^{m_1} & 0^{l_1} & 1^{m_2} & 0^{l_2} & \cdots \end{pmatrix},$$

где $m_1, l_1, m_2, l_2, \ldots$ — натуральные числа, показывающие количество подряд идущих единиц или нулей. Причём, поскольку каждое одночастичное состояние может занять один протон и один нейтрон, $m = \sum_a m_a = 120$. Также неуказанные (174 - m - l) штук одночастичных состояний считаются незанятыми $(l = \sum_a l_a)$.

В таблице А.1 приведены характеристики всех рассматриваемых одночастичных состояний и указаны числа заполнения для основного состояния ядра. Соответственно, основное состояние ядра будет описано набором $(1^{120} \ 0^{54}) \equiv (1^{120})$.

Суммарная энергия $V(\alpha)$ некоторого многочастичного состояния $\{n_\lambda\}$ определяется как

$$V(\alpha) = 2 \cdot \sum_{\{n_{\lambda}\}} n_{\lambda} E_{\lambda}(\alpha),$$

где $E_{\lambda}(\alpha)$ — энергия (2.3) одночастичного состояния с квантовыми числами $|ijks_z\rangle$ определяющимися индексом λ (множитель перед суммой возникает из-за того, что в рассматриваемой задаче нейтроны и протоны описываются одинаковыми состояниями λ).

$$V(\alpha) = 2 \cdot 1{,}41 \sum_{\{n_{\lambda}\}} n_{\lambda} \left\{ \frac{i^2}{e^{2\alpha}} + (j^2 + k^2) e^{\alpha} \right\}$$
(MəB) (2.4)

Поверхностное натяжение

В жидкокапельной модели энергия связи ядра, содержащего A нуклонов, в том числе Z протонов, описывается полуэмпирической формулой Бете–Вайцзеккера [1, Гл. 4, §1]

$$B(A,Z) = a_V A - a_S A^{2/3} - a_a \frac{(N-Z)^2}{A},$$
(2.5)

где слагаемое, учитывающее кулоновское отталкивание протонов, опущено, поскольку в рассматриваемой модели протоны считаются невзаимодействующими друг с другом.

Численные значения коэффициентов a_V , a_S , a_a выбираются из принципа наилучшего соответствия экспериментальным данным. Один из вариантов выбора этих параметров [1, Гл. 4, §4]:

$$a_V = 15,56 \text{ M} \Rightarrow B, \quad a_S = 17,23 \text{ M} \Rightarrow B, \quad a_a = 23,6 \text{ M} \Rightarrow B.$$
 (2.6)

В формуле Бете-Вайцзеккера (2.5) второе вычитаемое $a_S A^{\frac{2}{3}}$ представляет собой поправку к энергии связи ядра, обусловленную поверхностной энергией ядра.

Если его представить в виде

$$a_S A^{2/3} = kS$$
, rge $k = \frac{a_S}{4\pi r_0^2}$, (2.7)

S — площадь поверхности ядра,

то коэффициент k можно рассматривать как коэффициент поверхностного натяжения.

2.1.3 Аналитическое рассмотрение

Решая экстремальную задачу $\frac{\mathrm{d}V}{\mathrm{d}\alpha}\Big|_{\alpha=\alpha_{\mathrm{e}}}=0,$ найдём точку экстремума функции (2.4)

$$\alpha_{\rm e} = \frac{1}{3} \ln \frac{\sum 2n_{\lambda} i^2}{\sum n_{\lambda} \left(j^2 + k^2\right)}.$$
(2.8)

Поскольку $\frac{\mathrm{d}^2 V}{\mathrm{d}\alpha^2}\Big|_{\alpha=\alpha_{\mathrm{e}}} > 0$, то соотношение (2.8) устанавливает минимум функции суммарной энергии $V(\alpha)$ состояния $\{n_{\lambda}\}$ системы при её деформации.

Особый интерес представляют состояния системы с таким распределением частиц, при котором в рамках рассматриваемой деформации суммарная энергия будет монотонно убывать вплоть до конца процесса деформации.

Соответствующие распределения определяются из неравенства $\alpha_{\rm e} \geq \alpha_0$. Отсюда, располагаем условием на распределение частиц, удовлетворяющих оговорённому выше

требованию

$$\sum_{\{n_{\lambda}\}} n_{\lambda} i^{2} \ge \sum_{\{n_{\lambda}\}} 2n_{\lambda} \left(j^{2} + k^{2} \right).$$

$$(2.9)$$

2.2 Результат

Рассмотрев шесть штук различных состояний системы (в порядке возрастания энергии недеформированного положения), были получены следующие зависимости

Рисунок 2.2 — Зависимость суммарной энергии модели от деформации ямы.

Состояние $|\psi_0\rangle$, описывающееся зависимостью $V_0(\alpha)$, — основное состояние системы, в котором частицы распределены по возрастанию энергии одночастичных состояний.

Состояние характеризуется незамедлительным возрастанием суммарной энергии при деформации потенциальной ямы.

Числа заполнения соответствующих и полный спин $\sigma_z = \sum_{\{n_\lambda\}} n_\lambda s_z$ рассмотренных состояний

$$\begin{aligned} |\psi_0\rangle : & (1^{120}), \, \sigma_{z_0} = 0 \\ |\psi_1\rangle : & (1^{104} \ 0^4 \ 1^4 \ 0^8 \ 1^2 \ 0^{16} \ 1^4 \ 0^{14} \ 1^6), \, \sigma_{z_1} = 0 \\ |\psi_2\rangle : & (0^2 \ 1^2 \ 0^2 \ 1^{118}), \, \sigma_{z_2} = 0 \\ |\psi_3\rangle : & (1^{47} \ 0^1 \ 1^4 \ 0^4 \ 1^{14} \ 0^4 \ 1^2 \ 0^5 \ 1^7 \ 0^4 \ 1^4 \ 0^4 \ 1^8 \ 0^8 \ 1^4 \ 0^6 \ 1^{12} \ 0^4 \ 1^8 \ 0^2 \ 1^4 \ 0^{12} \ 1^6), \, \sigma_{z_3} = 0 \\ |\psi_4\rangle : & (1^6 \ 0^2 \ 1^4 \ 0^2 \ 1^4 \ 0^2 \ 1^{10} \ 0^4 \ 1^{10} \ 0^2 \ 1^{38} \ 0^4 \ 1^2 \ 0^6 \ 1^{26} \ 0^{10} \ 1^{14} \ 0^{10} \ 1^6), \, \sigma_{z_4} = 0 \\ |\psi_5\rangle : & (1^{16} \ 0^4 \ 1^{10} \ 0^4 \ 1^8 \ 0^4 \ 1^{14} \ 0^4 \ 1^5 \ 0^1 \ 1^2 \ 0^4 \ 1^8 \ 0^4 \ 1^4 \ 0^3 \ 1^{24} \ 0^3 \ 1^4 \ 0^6 \ 1^2 \ 0^4 \ 1^8 \ 0^4 \ 1^4 \ 0^2 \ 1^6 \ 0^3 \ 1^5), \, \sigma_{z_5} = 0 \end{aligned}$$

Среди них было обнаружено состояние $|\psi_3\rangle$ с соответствующей зависимостью $V_3(\alpha) = 2 \cdot 1,41 (1294e^{-2\alpha} + 1409e^{\alpha})$ (МэВ). Данное состояние не удовлетворяет условию (2.9), однако при данном распределении частиц точка экстремума функции $V(\alpha)$ расположена на наибольшем расстоянии от точки $\alpha = 0$ при минимальной возможной для такого состояния энергии до начала процесса деформации.

Полученные зависимости также во многом согласуются с результатами, представленными на соответствующем [3, рис. 12], где изображены кривые изменения суммарной энергии множества состояний системы из 60 бесспиновых частиц в зависимости от деформации границ потенциальной ямы.

2.2.1 Коэффициент поверхностного натяжения

Рисунок 2.3 — Энергии ядра при различных начальных деформациях.

Распределение $\{n_{\lambda}\}$ нуклонов, соответствующее минимуму энергии ядра, зависит от величины начальной деформации ядра. Каждая из сплошных кривых, изображённых на рис. 2.3, получена при определённых распределениях 120*n* и 120*p*, составленных при относительной начальной деформации ребра $b = a_0 e^{\alpha}$ «ящика», выраженной в процентах в верхнем индексе названия кривой, т.е. в $\frac{b(\alpha)-b(0)}{b(0)} \cdot 100$ (%) = $100(e^{\alpha}-1)$ (%). Например, распределение для кривой $V_0^{(11)}(\alpha)$ было получено при относительной начальной деформации ребра *b* в 11% (остальные рёбра деформированы соответственно). Таким образом,

$$V_0^{(0)}(\alpha) = 2 \cdot 1,41 \cdot (814e^{-2\alpha} + 1628e^{\alpha}),$$

$$V_0^{(5)}(\alpha) = 2 \cdot 1,41 \cdot (862e^{-2\alpha} + 1586e^{\alpha}),$$

$$V_0^{(11)}(\alpha) = 2 \cdot 1,41 \cdot (1016e^{-2\alpha} + 1468e^{\alpha}),$$

$$V_0^{(16)}(\alpha) = 2 \cdot 1,41 \cdot (1064e^{-2\alpha} + 1436e^{\alpha}),$$

$$V_0^{(28)}(\alpha) = 2 \cdot 1,41 \cdot (1160e^{-2\alpha} + 1384e^{\alpha}),$$

$$V_0^{(35)}(\alpha) = 2 \cdot 1,41 \cdot (1190e^{-2\alpha} + 1370e^{\alpha}).$$

Площадь поверхности «ящика» даётся выражением

$$S = S(\alpha) = 2a_0^2 e^{-\alpha} + 4a_0^2 e^{\frac{\alpha}{2}}.$$

Для наглядности приведём табл. 2.1, показывающую масштабы изменения суммарной энергии основного состояния ядра с ростом площади его поверхности.

Таблица 2.1 — Изменение энергии основного состояния ядра.

α/α_0	$S(lpha), { m \phi}$ м 2	$V_0^{(0)}(lpha),{ m M}$ эВ
0	866,9	6886,4
1/5	868,7	6943,6
$^{2/5}$	874,0	7109,1
$^{3/5}$	882,8	7376,2

Поскольку

$$S'(0) = 2a_0^2 \left(-e^{-\alpha} + e^{\alpha/2} \right) \Big|_{\alpha=0} = 0,$$

$$S''(0) = 2a_0^2 \left(e^{-\alpha} + \frac{1}{2}e^{\alpha/2} \right) \Big|_{\alpha=0} = 3a_0^2,$$

то площадь поверхности «ящика» для малых деформаций можно представить в виде

$$S(\alpha)\Big|_{\alpha \approx 0} = S(0) + \frac{1}{2}S''(0)\alpha^2 = 6a_0^2 + \frac{3}{2}a_0^2\alpha^2.$$

$$\Delta S(\alpha) - \text{приращение}_{\text{площади}}$$
(2.10)

Аналогично для полной энергии $E(\alpha)$ ядра (рассматриваем состояния с E'(0) = 0):

$$E(\alpha) = E(0) + \frac{1}{2}E''(0)\alpha^2.$$
(2.11)

Если приращение энергии $\Delta E(\alpha) = E(\alpha) - E(0) = \frac{1}{2}E''(0)\alpha^2$ представить в виде

$$\Delta E(\alpha) = \kappa \Delta S(\alpha),$$

$$\kappa = \frac{\Delta E(\alpha)}{\Delta S(\alpha)} = \frac{E''(0)}{3a_0^2},$$
(2.12)

то коэффициент
 $\kappa-$ искомый коэффициент поверхностного натяжения ядра.

Так, для $E(\alpha) = V_0^{(0)}(\alpha)$ — энергия основного состояния, коэффициент будет равен

$$\kappa = \frac{V_0^{(0)''}(0)}{3a_0^2} \approx 30 \ \frac{\text{M} \Im \text{B}}{\text{\phi} \text{M}^2}.$$
(2.13)

При выборе

$$\kappa \equiv k \approx 7 \; \frac{\text{M} \Im \text{B}}{\text{\Phi} \text{M}^2} \tag{2.14}$$

найдём соответствующее значение $E''(0) \equiv E''_S(0)$ из (2.13).

При условии $E(0) \equiv E_S(0) = V_0^{(0)}(0)$ получим огибающую кривую $E_S(\alpha)$, изображённую штрихами на рис. 2.3:

$$E_S(\alpha) = V_0^{(0)}(0) + \frac{3}{2}ka_0^2\alpha^2.$$
(2.15)

Для соответствующего параметра из (2.6), формулы (2.7) с $r_0 = 1,2$ (фм) коэффициент поверхностного натяжения, полученный в соответствии с формулой Бете-Вайцзеккера равен

$$k_W = 0.95 \ \frac{\text{M} \cdot \text{B}}{\text{d} \text{M}^2}.$$
(2.16)

Видно, что в рамках рассматриваемой модели значение k, описывающее огибающую кривую энергии, уже не совпадает со значением k_W формулы Вайцзеккера по порядку величины.

Приложения

А.1 Приложение 1

λ	n_λ	i	j	k	s_z	$E_{ijk}(0),{ m M}$ эВ
1	1	1	1	1	$0,\!5$	4,23
2	1	1	1	1	-0,5	4,23
3	1	2	1	1	$0,\!5$	8,46
4	1	2	1	1	-0,5	8,46
5	1	1	1	2	$0,\!5$	8,46
6	1	1	1	2	-0,5	8,46
7	1	1	2	1	$0,\!5$	8,46
8	1	1	2	1	-0,5	8,46
9	1	2	1	2	$0,\!5$	12,69
10	1	2	1	2	-0,5	12,69
11	1	2	2	1	$0,\!5$	12,69
12	1	2	2	1	-0,5	12,69
13	1	1	2	2	$0,\!5$	12,69
14	1	1	2	2	-0,5	12,69
15	1	3	1	1	$0,\!5$	15,51
16	1	3	1	1	-0,5	15,51
17	1	1	1	3	$0,\!5$	15,51
18	1	1	1	3	-0,5	15,51
19	1	1	3	1	0,5	15,51
20	1	1	3	1	-0,5	15,51
21	1	2	2	2	0,5	16,92

Таблица А.1 — Характеристика основного состояния ядра

Таблица А.1 (продолжение)

λ	n_{λ}	i	j	k	s_z	$E_{ijk}(0),{ m M}$ эВ
22	1	2	2	2	-0,5	16,92
23	1	3	1	2	$0,\!5$	19,74
24	1	3	1	2	-0,5	19,74
25	1	3	2	1	$0,\!5$	19,74
26	1	3	2	1	-0,5	19,74
27	1	2	1	3	$0,\!5$	19,74
28	1	2	1	3	-0,5	19,74
29	1	2	3	1	$0,\!5$	19,74
30	1	2	3	1	-0,5	19,74
31	1	1	2	3	$0,\!5$	19,74
32	1	1	2	3	-0,5	19,74
33	1	1	3	2	$0,\!5$	19,74
34	1	1	3	2	-0,5	19,74
35	1	3	2	2	$0,\!5$	23,97
36	1	3	2	2	-0,5	23,97
37	1	2	2	3	$0,\!5$	23,97
38	1	2	2	3	-0,5	23,97
39	1	2	3	2	$0,\!5$	23,97
40	1	2	3	2	-0,5	23,97
41	1	4	1	1	$0,\!5$	$25,\!38$
42	1	4	1	1	-0,5	$25,\!38$
43	1	1	1	4	$0,\!5$	$25,\!38$
44	1	1	1	4	-0,5	$25,\!38$
45	1	1	4	1	$0,\!5$	$25,\!38$
46	1	1	4	1	-0,5	$25,\!38$
47	1	3	1	3	$0,\!5$	26,79
48	1	3	1	3	-0,5	26,79
49	1	3	3	1	$0,\!5$	26,79
50	1	3	3	1	-0,5	26,79
51	1	1	3	3	$0,\!5$	26,79
52	1	1	3	3	-0,5	26,79
53	1	4	1	2	0,5	29,61
54	1	4	1	2	-0,5	29,61
55	1	4	2	1	$0,\!5$	29,61

Таблица А.1 (продолжение)

λ	n_λ	i	j	k	s_z	$E_{ijk}(0),{ m M}$ эВ
56	1	4	2	1	-0,5	29,61
57	1	2	1	4	$0,\!5$	29,61
58	1	2	1	4	-0,5	29,61
59	1	2	4	1	0,5	29,61
60	1	2	4	1	-0,5	29,61
61	1	1	2	4	0,5	29,61
62	1	1	2	4	-0,5	29,61
63	1	1	4	2	0,5	29,61
64	1	1	4	2	-0,5	29,61
65	1	3	2	3	0,5	31,02
66	1	3	2	3	-0,5	31,02
67	1	3	3	2	0,5	31,02
68	1	3	3	2	-0,5	31,02
69	1	2	3	3	0,5	31,02
70	1	2	3	3	-0,5	31,02
71	1	4	2	2	0,5	33,84
72	1	4	2	2	-0,5	33,84
73	1	2	2	4	0,5	33,84
74	1	2	2	4	-0,5	33,84
75	1	2	4	2	0,5	33,84
76	1	2	4	2	-0,5	33,84
77	1	4	1	3	$0,\!5$	36,66
78	1	4	1	3	-0,5	36,66
79	1	4	3	1	0,5	36,66
80	1	4	3	1	-0,5	36,66
81	1	3	1	4	0,5	36,66
82	1	3	1	4	-0,5	36,66
83	1	3	4	1	$0,\!5$	36,66
84	1	3	4	1	-0,5	36,66
85	1	1	3	4	$_{0,5}$	36,66
86	1	1	3	4	-0,5	36,66
87	1	1	4	3	0,5	36,66
88	1	1	4	3	-0,5	36,66
89	1	5	1	1	0,5	38,07

Таблица А.1 (продолжение)

λ	n_λ	i	j	k	s_z	$E_{ijk}(0),{ m M}$ эВ
90	1	5	1	1	-0,5	38,07
91	1	3	3	3	$0,\!5$	38,07
92	1	3	3	3	-0,5	38,07
93	1	1	1	5	$0,\!5$	38,07
94	1	1	1	5	-0,5	38,07
95	1	1	5	1	$0,\!5$	38,07
96	1	1	5	1	-0,5	38,07
97	1	4	2	3	0,5	40,89
98	1	4	2	3	-0,5	40,89
99	1	4	3	2	0,5	40,89
100	1	4	3	2	-0,5	40,89
101	1	3	2	4	$0,\!5$	40,89
102	1	3	2	4	-0,5	40,89
103	1	3	4	2	$0,\!5$	40,89
104	1	3	4	2	-0,5	40,89
105	1	2	3	4	0,5	40,89
106	1	2	3	4	-0,5	40,89
107	1	2	4	3	0,5	40,89
108	1	2	4	3	-0,5	40,89
109	1	5	1	2	$0,\!5$	42,30
110	1	5	1	2	-0,5	42,30
111	1	5	2	1	$0,\!5$	42,30
112	1	5	2	1	-0,5	42,30
113	1	2	1	5	0,5	42,30
114	1	2	1	5	-0,5	42,30
115	1	2	5	1	0,5	42,30
116	1	2	5	1	-0,5	42,30
117	1	1	2	5	$0,\!5$	42,30
118	1	1	2	5	-0,5	42,30
119	1	1	5	2	0,5	42,30
120	1	1	5	2	-0,5	42,30
121	0	5	2	2	0,5	46,53
122	0	5	2	2	-0,5	46,53
123	0	4	1	4	0,5	46,53

Таблица А.1 (продолжение)

λ	n_λ	i	j	k	s_z	$E_{ijk}(0),{ m M}$ эВ
124	0	4	1	4	-0,5	$46,\!53$
125	0	4	4	1	0,5	46,53
126	0	4	4	1	-0,5	46,53
127	0	2	2	5	$0,\!5$	46,53
128	0	2	2	5	-0,5	46,53
129	0	2	5	2	$0,\!5$	46,53
130	0	2	5	2	-0,5	46,53
131	0	1	4	4	$0,\!5$	46,53
132	0	1	4	4	-0,5	46,53
133	0	4	3	3	0,5	47,94
134	0	4	3	3	-0,5	47,94
135	0	3	3	4	$0,\!5$	47,94
136	0	3	3	4	-0,5	47,94
137	0	3	4	3	$0,\!5$	47,94
138	0	3	4	3	-0,5	47,94
139	0	5	1	3	$0,\!5$	49,35
140	0	5	1	3	-0,5	49,35
141	0	5	3	1	$0,\!5$	49,35
142	0	5	3	1	-0,5	49,35
143	0	3	1	5	$0,\!5$	49,35
144	0	3	1	5	-0,5	49,35
145	0	3	5	1	$0,\!5$	49,35
146	0	3	5	1	-0,5	49,35
147	0	1	3	5	$0,\!5$	49,35
148	0	1	3	5	-0,5	49,35
149	0	1	5	3	$0,\!5$	49,35
150	0	1	5	3	-0,5	49,35
151	0	4	2	4	$0,\!5$	50,76
152	0	4	2	4	-0,5	50,76
153	0	4	4	2	$0,\!5$	50,76
154	0	4	4	2	-0,5	50,76
155	0	2	4	4	$_{0,5}$	50,76
156	0	2	4	4	-0,5	50,76
157	0	6	1	1	$0,\!5$	53,58

iλ $E_{ijk}(0), \, \mathrm{M}$ эВ \boldsymbol{j} ${m k}$ n_λ s_z $53,\!58$ -0,5 $0,\!5$ $53,\!58$ -0,5 $53,\!58$ $0,\!5$ 53,58 -0,5 $53,\!58$ $0,\!5$ $53,\!58$ -0,5 $53,\!58$ $53,\!58$ $0,\!5$ -0,5 $53,\!58$ $0,\!5$ $53,\!58$ 53,58 -0,5 $53,\!58$ $0,\!5$ 53,58 -0,5 $0,\!5$ $53,\!58$ -0,5 $53,\!58$ $0,\!5$ $53,\!58$ -0,5 $53,\!58$

Таблица А.1 (продолжение)

Список литературы

- 1. *Валантэн Л.* Субатомная физика (ядра и частицы) : Элементарный подход. Т. 1. М. : Мир, 1986. (2). Пер. с франц.
- 2. *Валантэн Л.* Субатомная физика (ядра и частицы) : Дальнейшее развитие. Т. 2. М. : Мир, 1986. (2). Пер. с франц.
- 3. *Hill D. L.*, *Wheeler J. A.* Nuclear Constitution and the Interpretation of Fission Phenomena // Physical Review. − 1953. − T. 89, № 5. − C. 1102−1145.