МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

(НИЯУ «МИФИ»)

Институт ядерной физики и технологий Кафедра физики элементарных частиц (№40)

УДК 539.12.01

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Изучение работы вспомогательных детекторов по идентификации частиц для оценки качества их отбора для эксперимента 2021 г. по тестированию детектора переходного излучения

Студент

Токарева П.С.

Научный руководитель к.ф.-м.н., доцент

Смирнов С.Ю.

Содержание

1	Введение				
	1.1	Переходное излучение	4		
	1.2	Цели и задачи работы	4		
2	Описание эксперимента				
	2.1	Система PID	5		
	2.2	Набор данных	6		
	2.3	Пакеты программ	6		
3	Обработка данных				
	3.1	Изучение спектров амплитуд пионов и электронов	7		
	3.2	Изучение 2d спектров корелляций сигналов детекторов	8		
	3.3	Определение количества примеси остаточных частиц одного сорта в			
		наборе данных по частицам другого сорта	9		
4	Заключение				

1 Введение

1.1 Переходное излучение

Переходное излучение (ПИ) - это форма электро-магнитного излучения, которое возникает при пересечении заряженной частицей границы раздела двух сред с отличающимися диэлектрическими проницаемостями, было предсказано впервые Л.Гинзбургом и И.Франком ещё в 1945 году. [1] ПИ возникает по обе стороны границы раздела среды и обусловлено изменением поля частицы при переходе из одной среды в другую.

В случае ультрарелятивистких частиц ($\gamma = E/m >> 1$) формируется узконаправденное ПИ, основная энергия которого расположена в ренгеновской области спектра, причём данная энергия обладает достаточно резкой зависимотью от Лоренц-фактора частицы

$$E \sim \gamma^n$$

Детекторы переходного излучения (TRDs) широко используются для регистрации ультрарелятивистких заряженных чатиц. Используя большинство детекторов можно идетифицировать частицы с γ -фактором от ~ 500 и до ~ 2 – 3 · 10³. Однако же, для многих экспериментов требуется идентификация частиц с $\gamma \sim 10^5$, что сложно сделать используя детекторы, основынные лишь на измерении энергии излучения. Дополнительную информацию о Лоренц-факторе можно получить из углового распределения переходных фотонов. Детекторы переходного излучения, основанные на пиксельных детекторах дают уникальную возможность для точных измерений спектальных и угловых распределений ПИ. [2]

1.2 Цели и задачи работы

Целью работы является анализ данных с системы проеделия частиц, а именно: выделение в смешанном пучке с энергией 20 Gev при промощи 3-х детекторов: черенковского (Cherenkov), ливневого (PreShower) и калориметра из свинцового стекла (LeadGlass).

Главной задачей работы является определение остаточной примеси частиц одного сорта в наборе данных по частицам другого сорта (с какой вероятностью пион будет идетифицирован как электрон, и наоборот).

2 Описание эксперимента

Установка представляет из себя: многослойный радиатор, находящийся на расстоянии порядка 2 м от детектора, трубу, заполненную гелием для предотвращения поглощения фотонов переходного излучения, сенсора из компенсированного хромом GaAs толщиной 500 мкм соединенного с чипом, использующимся как детектор. За детектором располагается система определения частиц Particle Identification detectors (PID).[3]

Рис. 1: Схема установки

2.1 Система PID

Система определения частиц сотит из следующих состоявляющих:

- Черенковский детектор (Cherenkov detector), или детектор черенковского излучения, прибор для регистрации заряженных частиц. Принцип работы основан на регистрации излучения Вавилова-Черенкова, возникающего при движении заряженной частицы в прозрачной среде со скоростью, большей скорости света в данной среде.
- Ливневой детектор (PreShower detector) позволяет эффективно разделять источники высвобожденной энергии, отличая одиночные фотоны от пар фотонов, появляющихся в резульате распадов пи-мезонов [4].
- Калориметр из свинцового стекла (LeadGlass Calorimetor). Калориметры предназначены главным образом для измерения полной энергии (в том числе и нейтральных) частиц. Попав в вещество калориметра частица рождает электромагнитный или адронный ливень, передавая им свою энергию. Чем больший процент ливня поглотится в калориметре, тем точнее будет измерена энергия. Важно отметить, что калориметры чувствительны как к заряженным, так и к нейтральным частицам. Калориметр из свинцового стекала относится к типу гомогенных, т.е. поглощающий материал одновременно является детектирующим. Основное преимущество гомогенных детекторов – хорошее энергетическое

разрешение, что связано с тем, что вся энергия падающей частицы поглощается в активной (детектирующей) среде.

2.2 Набор данных

В ходе работы производился анализ данных с PID летнего сеанса измерений 2021 года. В ходе эксперимента на установку был направлен смешанный пучок пи-мезонов и электронов с энергией 20 GeV. Каждое событие прохождения частицы через установку регистрировалось детекторами, которые суммарно давали 12 значений откликов.

2.3 Пакеты программ

Для анализа данных был использован пакет программ и библиотек ROOT. На одном из этапов были использованы библиотеки для обработки данных pandas [5] и numpy [6].

3 Обработка данных

3.1 Изучение спектров амплитуд пионов и электронов

На первом этапе работы были постороены амплитудные спектры сигналов с трёх детекторов с учетом того, какая по показаниям триггерной электроники пролетела частица: электрон или пион. Результаты представлены на Рис. 2, Рис.3 и Рис.4.

Рис. 2: Спектр амплитуд Ливневого детектора для электронов (слева) и пионов (справа).

Рис. 3: Спектр амплитуд Черенковского детектора для электронов (слева) и пионов (справа).

На основании наборов данных, представленных на рисунках с помощь пакетов pandas были определены границы областей по амплитудам, в которых с наибольшей вероятностью лежат синалы от пролетающих пионов и электронов частиц. Доверительный интервал был определён следующим образом:

- 1. Были обрезан датасеты сигналов с декторов согласно 5-му и 95-му процентилю.
- 2. Полученные границы были взяты в каестве границ областей по амплитудам.

Результаты данного анализа представлены ниже:

• Для Ливневого детектора сигнал от электрона лежит в области 1000 – 3800 QDC count, от пиона в области 300 – 600 QDC count.

Рис. 4: Спектр амплитуд Каллориметра для электронов (слева) и пионов (справа).

- Для Каллориметра из свинцового стекла сигнал от электрона лежит в области 1500 1700 QDC count, от пиона в области 200 900 QDC count.
- Для Черенковского детектора сигнал от электрона лежит в области 250 650 QDC count, от пиона в области 100 130 QDC count.

3.2 Изучение 2d спектров корелляций сигналов детекторов

На втором этапе работы были постороены двухмерные гистограммы зависимости амплитуды сигнала одного детектора от другого. Результаты представлены на Рис. 5, Рис.6 и Рис.7.

Рис. 5: 2d гистограммы зависимости амплитуд сигналов детекторов для всех событий(без учёта срабатывания триггера)

Рис. 6: 2d гистограммы зависимости амплитуд сигналов детекторов при учёте срабатывания триггера на электрон

По полученным гитограммам были определены границы амплитуд сигналов для идентификации частиц, которые используются в триггерной электронике. Результаты представдены в таблце 1.

Детектор	Черенковский	Ливневой	Калориметр
Электроны	90 - 120	900 - 4200	1450 - 2000
Пионы	130 - 800	250 - 850	150 - 1200

Таблица 1: Границы амплитуд сигналов для определения частиц, заложенные в триггерной электронике

3.3 Определение количества примеси остаточных частиц одного сорта в наборе данных по частицам другого сорта

На последнем этапе работы был проведен анлиз амлитудных спектров с черенковского детектора. При этом пролетающая частица была идетифицирована с помощью двух других детекторов на основании результатов п. 3.1. Аналогично п. 3.1 были построены гистограммы этих сигналов, как и на первом этапе (Рис.8).

На основании гитограмм был определён интервал амплитуд (100–160 QDC count), в котором есть частицы, одновременно идетифицированные как пионы и электроны. Доля таких событий было расценено как количество остаточных примесей:

• Процент примесей в данных о сигналах электронов - 27%;

• Процент примесей в данных о сигналах пионов - 16%.

Рис. 7: 2d гистограммы зависимости амплитуд сигналов детекторов при учёте срабатывания триггера на пион

Рис. 8: Амплитудные спектры черенковского детектора, когда ливневой детектор и калориметр определили пролетающую частицу как электрон(красный) или пи-он(синий).

4 Заключение

В ходе работы были достигнуты следубщие результаты:

- Были изучены базовые принципы работы с пакетами программ root, pandas и numpy;
- Были проанализированы данные с системы идентификации частиц PID и по результатам были определены доверительные интервалы для амплитул, с помощью которых можно определить тип пролетающей через выбранный детектор частицы;
- Был найден процент примесей остаточных части одного типа в данных частиц другого типа.

Список литературы

- [1] V. L. Ginzburg и I. M. Frank. «Radiation of a uniformly moving electron due to its transition from one medium into another». B: J. Phys. (USSR) 9 (1945), c. 353—362.
- [2] Е. J. Schioppa и др. «First measurements of the spectral and angular distribution of transition radiation using a silicon pixel sensor on a Timepix3 chip». В: *Nucl. Instrum. Meth. A* 936 (2019). Под ред. Giovanni Batignani и др., с. 523—526. DOI: 10.1016/j.nima.2018.11.062.
- [3] F. Dachs и др. «Transition radiation measurements with a Si and a GaAs pixel sensor on a Timepix3 chip». B: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 958 (2020). Proceedings of the Vienna Conference on Instrumentation 2019, c. 162037. ISSN: 0168-9002. DOI: https://doi.org/10.1016/j.nima.2019.03.092. URL: https://www.sciencedirect.com/science/article/pii/S0168900219304346.
- [4] Rong-Shyang Lu. «The CMS preshower construction and commissioning». В: Nucl. Instrum. Meth. A 617 (2010). Под ред. Giorgio Chiarelli и др., с. 103—104. DOI: 10.1016/j.nima.2009.09.116.
- [6] NumPy v1.21 Manual. 2021.