Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

УДК 539.17

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ПЛОТНОСТЬ ВОЗБУЖДЁННЫХ СОСТОЯНИЙ АТОМНЫХ ЯДЕР

Научный руководитель д.ф-м.н., проф.

_____ А. Л. Барабанов

Студент

_____ Л. Е. Трофимов

Москва 2021

Содержание

B	ведение	3
1	Модели в ядерной физике 1.1 Модель ферми-газа 1.2 Жидкокапельная модель 	4 4 4
2	Допускаемые предположения	5
3	Исследование основных состояний	6
4	Исследование возбуждённых состояний 4.1 Алгоритм перебора возбуждённых состояний	7 8 9
\mathbf{C}_{1}	писок литературы	11

Введение

Ядро представляет собой систему из N нейтронов и Z протонов, находящихся в связанных состояниях в потенциальном поле. В используемой модели ядерный потенциал записывается в следующей форме:

$$U(x, y, z) = \begin{cases} -U_0, & \text{если } 0 < x < b, 0 < y < b, 0 < z < b, \\ 0, & \text{во всех остальных случаях.} \end{cases}$$

то есть представляет из себя 3-мерную потенциальную яму в форме куба. Глубина ямы есть U_0 , ширина — b. При b определяется полным числом нуклонов.

Если глубина потенциальной ямы велика, то энергии низших состояний приблизительно равны энергиям состояний в потенциале с бесконечно высокими стенками. Тогда возникает условие приближённого равенства нулю волновой функции одночастичного состояния на границах. Следовательно, энергии таких состояний относительно дна потенциальной ямы определяются формулой

$$E_{ijk} = \frac{\pi^2 \hbar^2}{2mb^2} \left(i^2 + j^2 + k^2 \right)$$
(1)

Также стоит различать уровни, которые определяются тремя квантовыми числами (i, j, k) от состояний, определяемыми квантовыми числами $(i, j, k, s_z)^1$. Для упрощения восприятия можно принять $\sigma = 2s_z$ и прослеживать значения квантовых чисел (i,j,k,σ) . Одночастичные состояния — это состояния, в которых может находиться только одна частица (p^+ или n^0), и которые характеризуются введёными квантовыми числами (i, j, k, σ) .

Если рассматривать фиксированное количество частиц N, то множитель $\frac{\pi^2 \hbar^2}{2mc^2}$ в формуле (1) будет фиксированным, и тогда можно будет перейти к безразмерной энергии

$$\varepsilon_{ijk} = i^2 + j^2 + k^2. \tag{2}$$

В ядерных реакциях образуются ядра с высокими энергиями возбуждения. Затем эта энергия высвобождается порциями путём испускания ядерных частиц. При этом ядро оказывается в одном из множества возможных возбуждённых состояний. Чем больше определённых возбуждённых состояний, тем более вероятен переход именно в них, поэтому важно понимать распределение плотности состояний возбуждённых ядер. В статье [1] приводится приближённая аналитическая формула для плотности возбуждённых состояний для модели ферми-газа²:

$$\omega_F^{\text{tot}}(E) = \frac{\sqrt{\pi}}{12} \frac{\exp\left[2\sqrt{aE}\right]}{a^{1/4}E^{5/4}}, \qquad a = \frac{\pi^2}{6} \left(g_\pi + g_\nu\right), \tag{3}$$

где a — параметр плотности мночастичных состояний. Здесь g_{π} и g_{ν} — плотности состояний протонов и нейтронов вблизи энергии Ферми.

Целью данной работы является разработка алгоритма перебора возбуждённых многочастичных состояний, с помощью которого можно будет получить зависимость плотности ω от энергии возбуждения U, сравнить её с формулой (3), а также получить значение параметра плотности многочастичных состояний а.

 $^{{}^{1}}s_{z} = \frac{1}{2}$ или $-\frac{1}{2}$ — проекция спина частицы на ось z. 2 Пояснение про модель ферми-газа следует далее.

1 Модели в ядерной физике

1.1 Модель ферми-газа

Полная энергия ядра состоит из двух частей противоположного знака. Одна из них — кинетическая энергия ядра T, равная сумме кинетических энергий A нуклонов T_{α} , то есть $T = \sum_{\alpha=1}^{A} T_{\alpha}$. Другая — потенциальная энергия, которую в первом приближении можно считать считать как сумму парных энергий, то есть $U = \sum_{\alpha} \sum_{\beta < \alpha} U_{\alpha\beta}$. Чем больше кинетическая энергия, тем больше по абсолютному значению должна потенциальная энергия для того, чтобы нуклон не вылетел из системы. О нуклонах, которые обладают самой большой кинетической энергией, говорят, что они обладают энергией Ферми E_F . Тогда для того, чтобы они не могли вылететь из ямы, глубина U_0 должна быть больше энергии E_F .

При этом нуклоны могут находиться в связанных возбуждённых состояниях, т.е. в таких состояниях, где их энергии находятся выше уровня Ферми, но нуклон не покинул ядро. Это означает, что его энергия E находится между E_F и U_0 .³ Эта разница U_0 и E_F называется энергией связи нуклона B_n и вычисляется далее.

1.2 Жидкокапельная модель

В жидкокапельной модели ядро считается шарообразным (если не деформировано). Радиусы ядер в первом приближении меняются по закону

$$R = r_0 \sqrt[3]{A}$$

Здесь $r_0 \approx 1.2$ фм, A = N + Z — массовое число атома. При этом объём ядра равен $\frac{4}{3}\pi A r_0^3$. В упрощённой модели объём куба b^3 приравнивается объёму ядра.

Помимо прочего имеется необходимость описывать наиболее важные характеристики атомного ядра: его массу и энергию связи составляющих его нуклонов. Эти характеристики описываются феноменологической капельной моделью Вайцзекера [2]. Энергия ядра выражается как

$$M(N,Z)c^{2} = Nm_{n}c^{2} + Zm_{p}c^{2} - B(N,Z),$$

$$B(N,Z) = a_{v}A - a_{s}A^{2/3} - a_{c}\frac{Z^{2}}{A^{1/3}} - a_{\alpha}\frac{(N-Z)^{2}}{A}$$
(4)

Здесь B(N,Z) — энергия связи ядра, содержащего N нейтронов и Z протонов, в которой присутствуют несколько слагаемых:

- *a_v* коэффициент объёмной энергии, который учитывает, что энергия связи пропорциональна числу *A* составляющих его частиц.
- a_s коэффициент поверхностной энергии. Нуклоны, находящиеся на поверхности, меньше «чувствуют» воздействие других частиц, чем нуклоны в глубине ядра. Число потерянных связей пропорционально числу нуклонов в поверхностном слое, т.е. площади поверхности 4πr₀²A^{2/3}.
- *a_c* коэффициент кулоновской энергии, учитывающий взаимодействие между протонами, имеющее характер отталкивания.

³В отчёте также рассматриваются квазистационарные одночастичные состояния, в которых нуклон может быть связан с ядром некоторое время.

• *a*_α — энергия ассиметрии. Без этого слагаемого нельзя получить тенденцию ядер строиться в примерном соответствии с равенством *N* = *Z*, нарушение которого в сторону избытка нейтронов вызывается кулоновским воздействием.

Эти коэффициенты находятся подбором так, чтобы формула наилучшим образом сходилась с экспериментальными данными.

2 Допускаемые предположения

Для начальной упрощенной модели были введены некоторые предположения.

1. Протоны и нейтроны не взаимодействуют друг с другом.

T.e. в формуле (4) можно опустить слагаемое, учитывающее кулоновское отталкивание протонов. По сути, мы считаем протоны «незаряженными». Нуклоны попрежнему находятся в связанном состоянии в потенциальной яме.

2. Количество протонов и нейтронов одинаково.

Тогда, если N = Z, то последнего слагаемого в (4) не будет.

3. Протоны и нейтроны (нуклоны) обладают одинаковой массой т.

Тогда энергия связи ядра будет равна

$$B(N,Z) = a_v A - a_s A^{2/3}$$

Обычно коэффициенты принимают равным
и $a_v=15.56$ МэВ, $a_s=17.23$ МэВ, $a_c\approx 0.7$ МэВ,
 $a_\alpha=23.6$ МэВ.

В дальнейшем мы интересуемся ядром ⁴⁰Са, поскольку у него число протонов Z и число нейтронов N равны по 20, а также по причине, которая станет ясна далее. Тогда для ядра ⁴⁰Са энергия связи B(N,Z) будет равна ≈ 421 МэВ.

В таком подходе при удалении,
например, одного нейтрона из ядра, обладающего массой M(N,Z), образуется ядро, масса которого будет теперь M(N-1,Z). Тогда из уравнения $M(N,Z)c^2 + B_n = M(N-1,Z)c^2 + m_nc^2$ имеем энергию связи нуклона в ядре

$$B_n = a_v - a_s \left(A^{2/3} - (A-1)^{2/3} \right) + \frac{a_\alpha}{A-1} \approx 12.8 \text{ M} \mathfrak{s} B$$

Помимо прочего, если A = 40, то размерный множитель в формуле (1) будет равен

$$\frac{\pi^2 \hbar^2}{2mb^2} \approx 4.68 \text{M} \cdot \text{B},\tag{5}$$

что поможет получить численные размерные значения для плотности многочастичных состояний и энергий.

3 Исследование основных состояний

Если рассматривать определённое фиксированное количество частиц (протонов или нейтронов) N, то из формулы (2) следует, что существуют вырожденные уровни, т.е. уровни, у которых квантовые числа i, j, k различны, но энергии одинаковы. Отсюда следует, что в данной модели одночастичные состояния вырождены не только по квантовому числу σ , но ещё и по i, j, k.

Номер		Энергия	Кратность	Суммарная	
уровня	ijk	уровня	вырождения	энергия	$\sum d_n = M$
n		$\varepsilon_{ijk} = \varepsilon_n$	уровня d_n	$\sum \varepsilon_n$	
1	111	3	2	6	2
2	112,121,211	6	6	42	8
3	122, 212, 221	9	6	96	14
4	113,131,311	11	6	162	20
5	222	12	2	186	22
6	123, 132, 213, 231, 312, 321	14	12	354	34
7	223, 232, 322	17	6	456	40
8	114, 141, 411	18	6	564	46
9	133,313,331	19	6	678	52
10	124, 142, 214, 241, 412, 421	21	12	930	64
11	223, 232, 322	22	6	1062	70
12	224, 242, 422	24	6	1206	76
13	134, 143, 314, 341, 413, 431	26	12	1518	88
14	115, 151, 511, 333	27	8	1734	96
15	234, 243, 324, 342, 423, 432	29	12	2082	108
16	125, 152, 215, 251, 512, 521	30	12	2442	120
17	225, 252, 522, 144, 414, 441	33	12	2838	132
18	334, 343, 433	34	6	3042	138
19	135, 153, 315, 351, 513, 531	35	12	3462	150
20	244, 424, 442	36	6	3678	156
21	235, 253, 325, 352, 523, 532, 116, 161, 661	38	18	4362	174

Таблица 1 — Энергетическое распределение основных состояний

В исследуемой модели были выбраны следующие параметры:

Максимальная рассматриваемая энергия: $\varepsilon_{iik} \leq 40$.

Количество $p^+: Z = 20.$

(6)

Количество n^0 : N = 20.

То есть в данном случае рассматривается ядро ⁴⁰Са, у которого 20 нейтронов и 20 протонов. При этом полагается, что все допущения, указанные ранее, применимы к данной ситуации.

Последовательность одночастичных состояний в порядке увеличения энергии представлена в таблице 1. Во втором столбце указаны комбинации (i, j, k), у каждой из который проекция спина $\sigma = +1$ или -1. Это учитывается в кратности вырождения уровня.

С учётом ограничения $\varepsilon_{ijk} \leq 40$ количество одночастичных состояний (для p^+ или n^0) оказалось равным 174 (см. последний столбец. Здесь M — количество одночастичных состояний), а суммарная энергия, расчитанная с использованием (2) и учётом

кратности уровней и спина, равна 4362, с помощью формулы (5) находим, что это соответствует энергии порядка 20 ГэВ.

Условимся, что заглавными буквами будут обозначаться размерные величины (например, E), малыми — безразмерные (например, ε). Исключение составляют числа N, Z, M, плотность ω и характеристика «близости» a.

Если выбираем число частиц N = 20, то по последнему столбцу таблицы определяем $\sum d_n = N = 20$. Тогда можно определить, что в основном состоянии будут полностью заполнены уровни $n \ge 1$ по 4. В частности, поэтому для исследований был выбран ⁴⁰Ca. В этом случае n = 4 называют полностью заполненным уровнем Ферми, энергия которого $E_F = 11 \cdot 4.68$ МэВ ≈ 51.5 МэВ. Тогда глубина ямы $U_0 = E_F + B_n = 51.5 + 12.8 \approx 65$ МэВ.

Поскольку нейтроны и протоны в данной задаче являются эквивалентными, то можно исследовать только распределение нейтронов (или протонов).

Наглядной интерпретацией заселённости энергетических уровней является ряд, составленный из нулей (если отсутствует частица в данном состоянии) и единиц (если присутствует). Так, основное состояние ядра можно записать в виде

$$\{n_1, n_2, \dots, n_M\} = \{n_\lambda\} = \{\underbrace{1, 1, \dots, 1}_{N=20}, 0, 0, 0, \dots\},\$$

где $n_1, n_2, ..., n_M$ называются числами заполнения, соответствующими N-частичному состоянию. В данном ряде каждая единица отвечает определённой комбинации (i, j, k, σ) . Нумерация, как и в таблице, происходит в порядке возрастания энергии. При этом

$$\sum_{\lambda=1}^{M} n_{\lambda} = N, \qquad \sum_{\lambda=1}^{M} E_{\lambda} n_{\lambda} = E_{\{n_{\lambda}\}}$$

Здесь E_{λ} - энергия одночастичного состояния, имеющего порядковый номер λ (вычисляется по формуле (1)), $E_{\{n_{\lambda}\}}$ - энергия N-частичного состояния.

Поскольку встречаются вырожденные состояния, то приняты несколько условностей для однозначного определения, какая единица (или нуль) какому состоянию отвечают в указаном выше ряду:

- Комбинации чисел ijk идут в порядке возрастания \overline{ijk}^4 .
- При равных комбинациях *ijk* нумерация происходит в порядке убывания проекции спина. Например, состояние |2121> имеет порядковый номер 11 и следует перед состоянием |212(-1)>, у которого будет порядковый номер 12.

4 Исследование возбуждённых состояний

Энергия возбуждения *N*-частичного состояния равна разности:

$$U_{\{n_{\lambda}\}} = E_{\{n_{\lambda}\}} - E_0, \tag{7}$$

где

$$E_0 = \frac{\pi^2 \hbar^2}{2mb^2} \sum_{\lambda=1}^N \varepsilon_\lambda \tag{8}$$

⁴Здесь \overline{ijk} - конкатенация. Например, если i = 2, j = 17, k = 43, то \overline{ijk} есть число 21743.

представляет собой энергию N-частичного основного состояния, которая для N = 20 равна 757.6 МэВ.

Вводим понятие плотности многочастичных состояний ω :

$$\omega = \frac{\Delta N}{\Delta E} = \omega(E).$$

Здесь ΔN — число многочастичных состояний, обладающих энергией возбуждения в интервале $[U, U + \Delta U]$. Следовательно, возникает задача перебора всех возможных состояний при определённых ограничениях на энергию возбуждения.

Также удобно ввести безразмерную энергию возбуждения $u = (\sum \varepsilon_n)_{\text{возб.}} - (\sum \varepsilon_n)_{\text{осн.}}$, где $(\sum \varepsilon_n)_{\text{осн.}} = 162$ — безразмерная энергия основного состояния (см. пятый столбец 1).

4.1 Алгоритм перебора возбуждённых состояний

Положим, что имеется M одночастичных состояний и N = 20 частиц. Тогда диапазоне энергий $[E, E + \Delta E]^5$ нужно для всех многочастичных состояний получить информацию:

- Энергия Е
- Энергия возбуждения U
- Числа заполнения $\{n_{\lambda}\}$

Для объяснения алгоритма сначала представим, что нет ограничения по энергиям, и надо найти информацию об абсолютно всех состояниях при M одночастичных состояний и N частицах. Тогда, как известно из комбинаторики,

Количество комбинаций
$$\equiv \mathcal{K} = \frac{M!}{(M-N)!N!}$$
 (9)

Так, если имеется, к примеру, M = 174 одночастичных состояния и N = 20 частиц, то $\mathcal{K} \sim 8 \times 10^{25}$. Поэтому для перебора всех комбинаций одночастичных состояний, которые отвечают энергии ε_n вплоть до 38 (см. (6) и 1) потребуются большие ресурсы.

Пусть для начала $\mathbf{M} = \mathbf{21}$. Тогда имеется основное многочастичное состояние $\{1, 1, ..., 1, 1, 0\}$, его энергия $\sum \varepsilon_n = 162$, а E_0 определяется соотношением (8) и равна

757.6 МэВ. Энергия возбуждения отсутствует, т.е. равна нулю. Далее, перемещаем частицу с 20-й⁶ позиции⁷ на 21-ю позицию: {1,1,...,1,0,1}.
Энергия *N*-частичного состояния равна 163. Энергия возбуждения U_{{n_λ}, расчитанная с помощью (7), равна 4.68 МэВ.

Следующий (второй) шаг: $\{1, 1, ..., 0, 1, 1\}, \sum \varepsilon_n = 163, U_{\{n_\lambda\}} = 4.68$ МэВ. Примечательно то, что энергия многочастичного состояния и энергия возбуждения не изменились: они такие же, как и при предыдущем шаге. Причиной этому служит вырождение энергий одночастичных состояний. Если проделать ещё 6 шагов, то изменения $U_{\{n_\lambda\}}$ не произойдёт.

⁵Здесь $E \equiv E_{\{n_\lambda\}}.$

 $^{^{6}}$ Нумерация состояний n_{λ} начинается с единицы.

⁷Под позицией понимается определённое одночастичное состояние.

На седьмой раз N-частичное состояние примет вид 13 7

 $\{1, ..., 1, 0, 1, ..., 1\}, E_{\{n_{\lambda}\}} = 165, U_{\{n_{\lambda}\}} = 3.$ В таблице 1 это соответствует занятому одночастичному состоянию $|2221\rangle$, n = 5 и незанятому $|221(-1)\rangle$, n = 3. При этом изменяется спин многочастичного состояния.

Действуя по аналогии, можно получить информацию ещё о тринадцати многочастичных состояниях, последнее из которых $\{0, 1, ..., 1\}$ характеризуется энергией $\sum \varepsilon_n = 171$.

Затем, при $\mathbf{M} = \mathbf{22}$ перебор ведётся по всем многочастичным состояниям, которые до этого не были учтены, то есть 22-е одночастичное состояние будет всегда занято. На рисунке 1 приведён алгоритм перебора многочастичных состояний; из каждого может получена информация об энергиях $E_{\{n_{\lambda}\}}, U_{\{n_{\lambda}\}}.$

Можно продолжить по аналогии. Первому многочастичному состоянию при $\mathbf{M} = \mathbf{23}$ будет соответствовать $\{\underline{1,...,1,0,0,0,1}\}$. Далее перебор происходит по схеме, анало-

гичной представленной на рисунке 1. К данному моменту общее количество комбинаций, найденных с помощью алгоритма, $\mathcal{K} = 1771$, что совпадает с формулой (9) при M = 23, N = 20. Этот алгоритм можно обобщить для произвольного числа M. Однако, проблема в том, что для чуть больших M перебор по данной методике занимает значительное время. Дело в том, что если интерес представляет некоторый диапазон энергий многочастичных состояний $[E, E + \Delta E]$, то алгоритм перебирает помимо нужных $\{n_{\lambda}\} \in [E, E + \Delta E]$ ещё ненужные $\{n_{\lambda}\} \notin [E, E + \Delta E]$, и последние в значительной степени преобладают при довольно узком диапазоне энергий.

Если поставить ограничение на энергии, т.е. прекращать циклы, в которых энергии многочастичных состояний возрастают, при превышении $E + \Delta E$, то вычисления несколько упрощаются.

4.2 Результаты моделирования

В качестве первого шага рассматривались многочастичные состояния, полученные в предположении, что возбуждаются N = 20 частиц, либо нейтроны, либо протоны. При учёте возбуждения как нейтронов, так и протонов, алгоритм усложняется. Эта задача не исследовалась в данной работе.

Изначально был выбран интервал энергий $\Delta \varepsilon = 1$, то есть $\Delta E = 4.68$ МэВ. Тогда при энергии возбуждения u от 1 до 19 безразмерных единиц были получены результаты, представленные в таблице 2, а также построены графики 2 в различных масштабах в безразмерных величинах. Точки на графике ставились следующим образом: например, в интервале энергий $u \in [3, 4]$ было получено 478 возможных возбуждённых многочастичных состояний. Тогда на графике будет поставлена точка (3,478).

Для сравнения также нарисована кривая, полученная с помощью аналитической формулы (3). При этом параметр *a* был выбран равным 1.4 МэВ⁻¹. Переменная *U* полагается непрерывно изменяющейся. Получается, она отражает зависимость $\omega_F^{tot}(U) = \frac{dN}{dU}$,

 $\{1, 1, \dots, 1, 1, 1, 0, 0, 1\}$ $\{1, 1, ..., 1, 1, 0, 1, 0, 1\}$ $\{1, 1, ..., 1, 0, 1, 1, 0, 1\}$ $\{1, 1, \dots, 0, 1, 1, 1, 0, 1\}$ $\{1, 0, ..., 1, 1, 1, 1, 0, 1\}$ $\{0, 1, \dots, 1, 1, 1, 1, 0, 1\}$ $\{1, 1, \dots, 1, 1, 0, 0, 1, 1\}$ $\{1, 1, ..., 1, 0, 1, 0, 1, 1\}$ $\{0, 1, \dots, 1, 1, 1, 0, 1, 1\}$ $\{1, 1, ..., 1, 0, 0, 1, 1, 1\}$ $\{1,1,...,0,1,0,1,1,1\}$ $\{1, 1, 0, 0, \dots, 1, 1, 1, 1\}$ $\{1, 0, 1, 0, \dots, 1, 1, 1, 1\}$ $\{0, 1, 1, 0, \dots, 1, 1, 1, 1\}$ $\{1, 0, 0, 1, \dots, 1, 1, 1, 1\}$ $\{0, 1, 0, 1, ..., 1, 1, 1, 1\}$ $\{0, 0, 1, 1, \dots, 1, 1, 1, 1\}$

Рисунок 1 — Многочастичные состояния в случае M = 22 то есть предельный случай $\Delta E \to 0$, и тогда в интервал энергий [E, E + dE] попадает dN многочастичных состояний.

$U, M \ni B$	$U + \Delta U$, МэВ	ε	$\varepsilon + \Delta \varepsilon$	E, МэВ	$E + \Delta E$, M \ni B	ΔN
4.68	9.36	163	164	762.84	767.52	27
14.04	18.72	165	166	772.20	776.88	478
23.40	28.08	167	168	781.56	786.24	2219
32.76	37.44	169	170	790.92	759.60	8142
42.12	46.80	171	172	800.28	804.96	41862
51.48	56.16	173	174	809.64	814.32	165265
60.84	65.52	175	176	819.00	823.68	437291
70.20	74.88	177	178	828.36	833.04	1145431
79.56	84.24	179	180	837.72	842.40	3471035
88.92	93.6	181	182	847.08	851.76	9323212

Таблица 2 — Количество возбуждённых состояний при $\Delta \varepsilon = 1$

Рисунок 2 — Количество возбуждённых состояний в зависимости от энергии возбуждения

Понятно, что чем больше интервал энергий, тем больше одночастичных состояний будет получено. При выборе большого интервала энергий ΔE количество многочастичных состояний ΔN резко возрастает, что можно увидеть из сравнения последнего столбца таблиц 2 и 3. Также чем меньше выбираем ΔE , тем точнее можно будет сравнить результаты с формулой (3). В виду этого количество возбуждённых многочастичных состояний для больших интервалов ΔE не рассматривались.

U, МэВ	$U + \Delta U$, МэВ	ε	$\varepsilon + \Delta \varepsilon$	E, МэВ	$E + \Delta E$, МэВ	ΔN
4.68	14.04	163	165	762.84	772.20	111
18.72	28.08	166	168	776.88	786.24	2615
32.76	42.12	169	171	790.92	800.28	28226
46.8	56.16	172	174	804.96	814.32	186499
60.84	70.20	175	177	819.00	828.36	935594
74.88	84.24	178	180	833.04	842.40	4102931

Таблица 3 — Количество возбуждённых состояний при $\Delta \varepsilon = 2$

Как было сказано ранее, энергия связи нуклона B_n в ядре ⁴⁰Са равна ≈ 12.8 МэВ. При этом большая часть многочастичных состояний, представленных в таблицах и на

графиках, отражает также и квазистабильные многочастичные состояния. И они не менее важны, поскольку возбуждённое ядро не может сразу перейти в низшее энергетическое состояние: оно сначала переходит в одно из возможных возбуждённых многочастичных состояний.

Список литературы

- [1] Capote R. RIPL Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations. *Nuclear Data Sheets*, 110(12):3107–3214, December 2009.
- [2] Валантэн Л. Субатомная физика: ядра и частицы. Т. 1. Элементарный подход: Пер. с франц. Москва «Мир», 1986.