Поиск аномальных вершин на основе процесса электрослабого рождения *Z*-бозона с фотоном в данных *pp*-столкновений с энергией 13 ТэВ в эксперименте ATLAS

Артур Семушин

нияу мифи

26.01.2022

Научный руководитель: к.ф.-м.н. Солдатов Е.Ю.

Артур Семушин (НИЯУ МИФИ)

EWK $Z\gamma$ aQGC

26.01.2022 1/38

Рассматриваемый процесс

Электрослабое рождение Z-бозона с фотоном.

Сигнатура: γ , 2 струи (или более), недостающий поперечный импульс ($E_{\rm T}^{\rm miss}$). Процесс: $pp \rightarrow \nu \bar{\nu} \gamma jj$.

Диаграммы, включающие рассеяние векторных бозонов (четверные вершины):

Параметризация лагранжиана операторами высших размерностей:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \sum_{n} \frac{F_{i,n}}{\Lambda^{n}} \mathcal{O}_{i}^{n+4} = \mathcal{L}_{SM} + \sum_{i} \sum_{n} f_{i,n} \mathcal{O}_{i}^{n+4}$$

f — размерная, но наблюдаемая константа связи.

Наиболее удобно изучать aQGC с помощью операторов размерности 8.

Пример:
$$\mathcal{O}_{T0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right].$$
Задача — получение пределов на *f*.

(1)

Рост сечения с энергией, выбор переменной p_{T}^{γ}

4/38

Перевзвешивание распределений

$$egin{aligned} |\mathcal{A}|^2 &= |\mathcal{A}_{\mathsf{SM}} + f\mathcal{A}_{\mathsf{BSM}}|^2 = \ &= |\mathcal{A}_{\mathsf{SM}}|^2 + f2\mathsf{Re}\left(\mathcal{A}_{\mathsf{SM}}^\dagger\mathcal{A}_{\mathsf{BSM}}
ight) + f^2 \left|\mathcal{A}_{\mathsf{BSM}}
ight|^2 \end{aligned}$$

Для моделирования отдельных слагаемых используется MadGraph5.

Восстановление унитарности с помощью клиппинга

 Рассеяние векторных бозонов (VBS) $\longrightarrow \hat{s}$. Унитарность *S*-матрицы: $SS^+ = 1$. Унитарность нарушается при использовании EFT \longrightarrow неограниченный рост сечения VBS с ростом \hat{s} .

Клиппинг — выключение вклада новой физики при $\sqrt{\hat{s}} > E_{
m clip}.$ $\sqrt{\hat{s}} = m_{Z\gamma}.$

*E*_{clip} — свободный теоретический параметр.

Используемые статистический метод и тестовая статистика

Тестовая статистика: $t_{\mu} = -2 \ln \lambda(\mu)$. $\lambda(\mu) = \frac{L(f, \hat{\hat{\theta}}(f))}{L(\hat{f}, \hat{\theta})}$ — отношение правдоподобия.

Метод CL_{s+b} : доверительный интервал — регион в пространстве параметров интереса μ , в котором $p_{\mu} = \int_{t_{\mu}^{\text{obs}}}^{\infty} f(t_{\mu}|\mu) dt_{\mu} > \alpha = 0.05.$

В пределе большой выборки распределение тестовой статистики $f(t_{\mu}|\mu)$ сходится к распределению χ^2 . Нахождение пределов (95% CL) сводится к условию $t_{\mu} = 3.84$.

Погрешности не были симметризованы для большей точности,

использовалась линейная интерполяция.

Артур Семушин (НИЯУ МИФИ)

EWK $Z\gamma$ aQGC

Для постановки пределов используется программа EFTfun. Пример: f_{T0} , $p_T^{\gamma} > 900$ ГэВ.

Оптимизация региона по ожидаемым пределам

E _{clip} , TeV	∞	1.8	1.7	1.6
$p_{\rm T}^{\gamma}$ >150 GeV	[-0.62; 0.58]	[-2.1; 1.8]	[-2.3; 1.9]	[-2.6; 2.2]
$p_{\rm T}^{\gamma}$ >300 GeV	[-0.36; 0.32]	[-1.24; 1]	[-1.4; 1.1]	[-1.6; 1.2]
$p_{\rm T}^{\gamma}$ >400 GeV	[-0.26; 0.23]	[-0.94; 0.75]	[-1.06; 0.83]	[-1.22; 0.95]
$p_{\rm T}^{\gamma}$ >500 GeV	[-0.21; 0.19]	[-0.81; 0.65]	[-0.93; 0.74]	[-1.08; 0.86]
$p_{\mathbf{T}}^{\gamma} > 600 \text{ GeV}$	[-0.18; 0.16]	[-0.76; 0.63]	[-0.89; 0.73]	[-1.06; 0.87]
$p_{\rm T}^{\gamma}$ >700 GeV	[-0.16; 0.14]	[-0.78; 0.67]	[-0.94; 0.81]	[-1.2; 1]
$p_{\mathbf{T}}^{\hat{\gamma}} > 800 \text{ GeV}$	[-0.14; 0.13]	[-0.87; 0.77]	[-1.07; 0.96]	[-1.4; 1.2]
$p_{\mathbf{T}}^{\gamma} > 900 \text{ GeV}$	[-0.13; 0.12]	[-1.02; 0.94]	[-1.3; 1.2]	[-1.6; 1.5]
$p_{\rm T}^{\gamma}$ >1000 GeV	[-0.12; 0.12]	[-1.3; 1.2]	[-1.6; 1.6]	[-2.1; 2]
$p_{\rm T}^{\dot{\gamma}}$ >1100 GeV	[-0.12; 0.12]			
$p_{\rm T}^{\hat{\gamma}}$ >1200 GeV	[-0.12; 0.11]			
$p_{\mathrm{T}}^{\hat{\gamma}} > 1300 \text{ GeV}$	[-0.13; 0.12]			
Bound	[-0.0; 0.0]	[-0.72; 0.72]	[-0.9; 0.9]	[-1.2; 1.2]

Результат оптимизации.

Выбранные регионы:

Для неунитаризованных пределов: $p_{\rm T}^{\gamma} > 900$ ГэВ.

Для унитаризованных пределов: $p_{\rm T}^{\gamma} > 600$ ГэВ для Т-семейства и $p_{\rm T}^{\gamma} > 400$ ГэВ для М-семейства операторов.

イロト イポト イヨト イヨト

Результат

Неунитаризованные пределы. Ожидаемые: [-0.13; 0.12] ТэВ⁻⁴. Наблюдаемые: [-0.095; 0.085] ТэВ⁻⁴.

<u>Унитаризованные пределы.</u> $E_{clip} = 1.7$ TeV. Ожидаемые: [-0.89; 0.73] ТэВ⁻⁴. Наблюдаемые: [-0.88; 0.72] ТэВ⁻⁴.

э

Модель без квадратичного слагаемого

С квадратичным слагаемым (обычный случай): $\mathcal{A} = \mathcal{A}_{\text{SM}} + \frac{F}{\Lambda^4} \mathcal{A}_{\text{BSM}} \rightarrow |\mathcal{A}|^2 = |\mathcal{A}_{\text{SM}}|^2 + \frac{F}{\Lambda^4} 2\text{Re}\left(\mathcal{A}_{\text{SM}}^{\dagger} \mathcal{A}_{\text{BSM}}\right) + \frac{F^2}{\Lambda^8} |\mathcal{A}_{\text{BSM}}|^2$

Без квадратичного слагаемого (линейный случай):

$$|\mathcal{A}|^2 = |\mathcal{A}_{\mathsf{SM}}|^2 + rac{\mathcal{F}}{\Lambda^4} 2\mathsf{Re}\left(\mathcal{A}_{\mathsf{SM}}^\dagger \mathcal{A}_{\mathsf{BSM}}
ight) \geq 0$$

(положительность приводит к теоретическому ограничению на f).

Результат оптимизации: выбран регион $p_{\rm T}^{\gamma} > 800$ ГэВ для Т-семейства и $p_{\rm T}^{\gamma} > 400$ ГэВ для М-семейства операторов (рассматривались только неунитаризованные пределы).

Результаты для f_{T0}:

Ожидаемые пределы: [-0.36; 1.38] ТэВ⁻⁴, Наблюдаемые пределы: [-0.36; 0.88] ТэВ⁻⁴. Обычные пределы (для сравнения): Ожидаемые: [-0.13; 0.12] ТэВ⁻⁴, Наблюдаемые: [-0.095; 0.085] ТэВ⁻⁴. Учет новой физики в фоновых процессах

Некоторые фоновые процессы (в частности, $W\gamma$) могут содержать такую же новую физику, как и $Z\gamma$. Это приводит к улучшению пределов.

Coefficient	Only $Z\gamma$ EFT	$Z\gamma$ and $W\gamma$ EFT
f _{T0}	[-0.752; 0.714]	[-0.750; 0.706]
f _{M0}	[-22.1; 22.2]	[-21.1; 21.5]

Работа была представлена на Particles and Nuclei International Conference (PANIC2021).

EWK $Z\gamma$ aQGC

- работа по получению пределов завершена;
- для некоторых коэффциентов удалось получить наилучшие в мире пределы.

3

ヘロト 人間ト ヘヨト ヘヨト

BACK-UP

Артур Семушин (НИЯУ МИФИ)

26.01.2022

イロト イポト イヨト イヨト

13/38

э.

Определения всех операторов размерности 8

$$\begin{split} \mathcal{O}_{\text{S0}} &= \left[(D_{\mu} \Phi)^{\dagger} \, D_{\nu} \Phi \right] \left[(D^{\mu} \Phi)^{\dagger} \, D^{\nu} \Phi \right], \\ \mathcal{O}_{\text{S1}} &= \left[(D_{\mu} \Phi)^{\dagger} \, D^{\mu} \Phi \right] \left[(D_{\nu} \Phi)^{\dagger} \, D^{\nu} \Phi \right]. \end{split}$$

$$\begin{split} \mathcal{O}_{M0} &= \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right], \\ \mathcal{O}_{M1} &= \text{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right], \\ \mathcal{O}_{M2} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\beta} \Phi \right], \\ \mathcal{O}_{M3} &= \left[B_{\mu\nu} B^{\nu\beta} \right] \left[\left(D_{\beta} \Phi \right)^{\dagger} D^{\mu} \Phi \right], \\ \mathcal{O}_{M4} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] B^{\beta\nu}, \\ \mathcal{O}_{M5} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] B^{\beta\mu} + \text{h.c.}, \\ \mathcal{O}_{M7} &= \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]. \end{split}$$

$$\begin{split} \mathcal{O}_{\mathsf{T0}} &= \mathsf{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \right] \mathsf{Tr} \, \left[\hat{W}_{\alpha\beta} \, \hat{W}^{\alpha\beta} \right], \\ \mathcal{O}_{\mathsf{T1}} &= \mathsf{Tr} \, \left[\hat{W}_{\alpha\nu} \, \hat{W}^{\mu\beta} \right] \mathsf{Tr} \, \left[\hat{W}_{\mu\beta} \, \hat{W}^{\alpha\nu} \right], \\ \mathcal{O}_{\mathsf{T2}} &= \mathsf{Tr} \, \left[\hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \right] \mathsf{Tr} \, \left[\hat{W}_{\beta\nu} \, \hat{W}^{\nu\alpha} \right], \\ \mathcal{O}_{\mathsf{T5}} &= \mathsf{Tr} \, \left[\hat{W}_{\mu\nu} \, \hat{W}^{\mu\nu} \right] \left[B_{\alpha\beta} B^{\alpha\beta} \right], \\ \mathcal{O}_{\mathsf{T6}} &= \mathsf{Tr} \, \left[\hat{W}_{\alpha\nu} \, \hat{W}^{\mu\beta} \right] \left[B_{\mu\beta} B^{\alpha\nu} \right], \\ \mathcal{O}_{\mathsf{T7}} &= \mathsf{Tr} \, \left[\hat{W}_{\alpha\mu} \, \hat{W}^{\mu\beta} \right] \left[B_{\beta\nu} B^{\nu\alpha} \right], \\ \mathcal{O}_{\mathsf{T8}} &= \left[B_{\mu\nu} B^{\mu\nu} \right] \left[B_{\alpha\beta} B^{\alpha\beta} \right], \\ \mathcal{O}_{\mathsf{T9}} &= \left[B_{\alpha\mu} B^{\mu\beta} \right] \left[B_{\beta\nu} B^{\nu\alpha} \right]. \end{split}$$

Артур Семушин (НИЯУ МИФИ)

EWK $Z\gamma$ aQGC

26.01.2022

- 22

14/38

イロト 不得 トイヨト イヨト

Влияние операторов размерности 8 на четверные вершины

Operator	WWWW	WWZZ	$WWZ\gamma$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$
\mathcal{O}_{S0} , \mathcal{O}_{S1}	0	0			0				
$\mathcal{O}_{T0}, \mathcal{O}_{T1}, \mathcal{O}_{T2}$	0	0	0	0	0	0	0	0	0
$\mathcal{O}_{T5}, \mathcal{O}_{T6}, \mathcal{O}_{T7}$		0	0	0	0	0	0	0	0
$\mathcal{O}_{T8}, \mathcal{O}_{T9}$					0	0	0	0	0
$\mathcal{O}_{M0}, \mathcal{O}_{M1}, \mathcal{O}_{M7}$	0	0	0	0	0	0	0		
$\mathcal{O}_{M2}, \mathcal{O}_{M3}, \mathcal{O}_{M4}, \mathcal{O}_{M5}$		0	0	0	0	0	0		

26.01.2022 15/38

3

イロト 不得下 イヨト イヨト

$$\mathsf{CL}_{s+b}$$
 и CL_s

$$\mathsf{CL}_{s+b}: \, p^{s+b}_\mu = \int\limits_{t^{\mathsf{obs}}_\mu}^\infty f(t_\mu|\mu) \, dt_\mu > lpha = 0.05$$

$$\mathsf{CL}_{s}: p_{\mu}^{s} = \frac{p_{\mu}^{s+b}}{p_{\mu}^{b}} > \alpha = 0.05$$

$$p^b_\mu = \int\limits_{t^{
m obs}_\mu}^\infty f(t_\mu|0)\,dt_\mu$$

・ロト・日ト・ヨト・ヨト ヨ のへで 26.01.2022 16/38

Применимость асимптотического распределения

Артур Семушин (НИЯУ МИФИ)

EWK $Z\gamma$ aQGC

26.01.2022 17 / 38

э

$$heta \sim {\it N}(0,1)$$
 — параметр, σ^{\pm} — вариации.

*N*₀ — ожидаемое из МК количество событий.

Количество событий, поправленное на погрешность: $N = N_0 \cdot \begin{cases} (1 - \sigma_- \theta) &, \ \theta < 0, \\ (1 + \sigma_+ \theta) &, \ \theta > 0. \end{cases}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NLO поправка

 $f_{
m T0},\ p_{
m T}^{\gamma} > 1000 \,\, {
m GeV}$

E _{clip} , TeV	LO	NLO
∞	[-0.126; 0.118]	[-0.126; 0.118]
5	[-0.136; 0.127]	[-0.136; 0.127]
4	[-0.159; 0.147]	[-0.159; 0.147]
3	[-0.242; 0.222]	[-0.243; 0.222]
2	[-0.905; 0.848]	[-0.908; 0.852]

э

Оптимизация f_{T0} [1]

E _{clip} , TeV	∞	5	4	3	2
$p_{\mathbf{T}}^{\gamma}$ >150 GeV	[-0.62; 0.58]	[-0.66; 0.61]	[-0.73; 0.68]	[-0.95; 0.86]	[-1.7; 1.5]
$p_{\rm T}^{\gamma}$ >300 GeV	[-0.36; 0.32]	[-0.38; 0.34]	[-0.42; 0.38]	[-0.55; 0.48]	[-1.02; 0.84]
$p_{\mathbf{T}}^{\gamma}$ >400 GeV	[-0.26; 0.23]	[-0.27; 0.24]	[-0.31; 0.27]	[-0.41; 0.34]	[-0.77; 0.62]
$p_{\mathbf{T}}^{\gamma}$ >500 GeV	[-0.21; 0.19]	[-0.22; 0.2]	[-0.25; 0.22]	[-0.33; 0.28]	[-0.65; 0.53]
$p_{\mathbf{T}}^{\gamma}$ >600 GeV	[-0.18; 0.16]	[-0.19; 0.17]	[-0.21; 0.19]	[-0.29; 0.24]	[-0.59; 0.49]
$p_{\mathbf{T}}^{\gamma} > 700 \text{ GeV}$	[-0.16; 0.14]	[-0.17; 0.15]	[-0.19; 0.17]	[-0.26; 0.22]	[-0.58; 0.49]
$p_{\mathbf{T}}^{\gamma} > 800 \text{ GeV}$	[-0.14; 0.13]	[-0.15; 0.13]	[-0.17; 0.15]	[-0.24; 0.21]	[-0.61; 0.53]
$p_{\mathbf{T}}^{\gamma} > 900 \text{ GeV}$	[-0.13; 0.12]	[-0.14; 0.13]	[-0.16; 0.14]	[-0.23; 0.21]	[-0.69; 0.63]
$p_{\mathbf{T}}^{\gamma}$ >1000 GeV	[-0.12; 0.12]	[-0.13; 0.12]	[-0.16; 0.14]	[-0.24; 0.22]	[-0.89; 0.84]
$p_{\rm T}^{\gamma}$ >1100 GeV	[-0.12; 0.12]	[-0.13; 0.12]	[-0.16; 0.15]	[-0.26; 0.24]	[-1.2; 1.1]
$p_{\mathbf{T}}^{\hat{\gamma}} > 1200 \text{ GeV}$	[-0.12; 0.11]	[-0.13; 0.12]	[-0.16; 0.15]	[-0.29; 0.27]	
$p_{\mathbf{T}}^{\gamma}$ >1300 GeV	[-0.13; 0.12]	[-0.14; 0.14]	[-0.18; 0.17]	[-0.36; 0.35]	
Bound	[-0; 0]	[-0.012; 0.012]	[-0.029; 0.029]	[-0.093; 0.093]	[-0.47; 0.47]

Оптимизация f_{T0} [2]

E _{clip} , TeV	1.8	1.7	1.6	1.5	1.4	1.3	1
$p_{\rm T}^{\gamma}$ >150 GeV	[-2.1; 1.8]	[-2.3; 1.9]	[-2.6; 2.2]	[-2.9; 2.4]	[-3.4; 2.8]	[-3.9; 3.2]	[-7; 5.6]
p_{T}^{γ} >300 GeV	[-1.24; 1]	[-1.4; 1.1]	[-1.6; 1.2]	[-1.8; 1.4]	[-2.1; 1.6]	[-2.5; 1.9]	[-4.8; 3.7]
$p_{\mathbf{T}}^{\gamma}$ >400 GeV	[-0.94; 0.75]	[-1.06; 0.83]	[-1.22; 0.95]	[-1.4; 1.1]	[-1.7; 1.3]	[-2; 1.6]	[-4.3; 3.5]
$p_{\mathbf{T}}^{\gamma}$ >500 GeV	[-0.81; 0.65]	[-0.93; 0.74]	[-1.08; 0.86]	[-1.3; 1]	[-1.6; 1.2]	[-1.9; 1.6]	[-4.7; 4]
$p_{\mathbf{T}}^{\gamma}$ >600 GeV	[-0.76; 0.63]	[-0.89; 0.73]	[-1.06; 0.87]	[-1.3; 1.1]	[-1.6; 1.4]	[-2.1; 1.8]	[-5.4; 5]
p_{T}^{γ} >700 GeV	[-0.78; 0.67]	[-0.94; 0.81]	[-1.2; 1]	[-1.5; 1.3]	[-1.9; 1.7]	[-2.5; 2.3]	[-5.9; 5.7]
$p_{\mathbf{T}}^{\hat{\gamma}} > 800 \text{ GeV}$	[-0.87; 0.77]	[-1.07; 0.96]	[-1.4; 1.2]	[-1.7; 1.6]	[-2.2; 2]	[-2.9; 2.7]	[-6.5; 6.4]
$p_{\mathbf{T}}^{\hat{\gamma}} > 900 \text{ GeV}$	[-1.02; 0.94]	[-1.3; 1.2]	[-1.6; 1.5]	[-2.1; 2]	[-2.7; 2.5]	[-3.5; 3.4]	[-8.3; 8.3]
p_{T}^{γ} >1000 GeV	[-1.3; 1.2]	[-1.6; 1.6]	[-2.1; 2]	[-2.7; 2.6]	[-3.6; 3.4]	[-4.8; 4.7]	[-15; 15]
$p_{\rm T}^{\dot{\gamma}}$ >1100 GeV							
$p_{\mathrm{T}}^{\hat{\gamma}} > 1200 \text{ GeV}$							
$p_{T}^{\gamma} > 1300 \text{ GeV}$							
Bound	[-0.72; 0.72]	[-0.9; 0.9]	[-1.2; 1.2]	[-1.5; 1.5]	[-2; 2]	[-2.6; 2.6]	[-7.5; 7.5]

Оптимизация f_{T5} [1]

E _{clip} , TeV	∞	5	4	3	2.9	2.8
$p_{\rm T}^{\gamma}$ >150 GeV	[-0.61; 0.65]	[-0.64; 0.69]	[-0.7; 0.77]	[-0.89; 0.99]	[-0.92; 1.03]	[-0.96; 1.07]
$p_{\rm T}^{\dot{\gamma}}$ >300 GeV	[-0.34; 0.38]	[-0.35; 0.4]	[-0.39; 0.44]	[-0.5; 0.58]	[-0.51; 0.6]	[-0.54; 0.63]
$p_{\rm T}^{\gamma}$ >400 GeV	[-0.24; 0.27]	[-0.25; 0.29]	[-0.28; 0.32]	[-0.36; 0.42]	[-0.37; 0.44]	[-0.39; 0.46]
$p_{\mathbf{T}}^{\gamma}$ >500 GeV	[-0.19; 0.22]	[-0.2; 0.23]	[-0.23; 0.26]	[-0.29; 0.35]	[-0.3; 0.36]	[-0.32; 0.38]
$p_{\mathbf{T}}^{\gamma}$ >600 GeV	[-0.16; 0.19]	[-0.17; 0.2]	[-0.19; 0.22]	[-0.25; 0.3]	[-0.27; 0.31]	[-0.28; 0.33]
$p_{\rm T}^{\gamma}$ >700 GeV	[-0.15; 0.16]	[-0.15; 0.17]	[-0.17; 0.2]	[-0.23; 0.27]	[-0.24; 0.28]	[-0.26; 0.3]
$p_{\mathbf{T}}^{\gamma} > 800 \text{ GeV}$	[-0.13; 0.15]	[-0.14; 0.16]	[-0.16; 0.18]	[-0.22; 0.25]	[-0.23; 0.26]	[-0.24; 0.28]
$p_{\mathbf{T}}^{\gamma} > 900 \text{ GeV}$	[-0.12; 0.13]	[-0.13; 0.14]	[-0.15; 0.17]	[-0.22; 0.24]	[-0.23; 0.26]	[-0.25; 0.28]
$p_{\mathbf{T}}^{\gamma}$ >1000 GeV	[-0.12; 0.13]	[-0.13; 0.14]	[-0.15; 0.16]	[-0.23; 0.25]	[-0.25; 0.27]	[-0.27; 0.29]
$p_{\rm T}^{\dot{\gamma}}$ >1100 GeV	[-0.12; 0.13]	[-0.13; 0.14]	[-0.15; 0.17]	[-0.25; 0.27]	[-0.27; 0.29]	[-0.3; 0.32]
$p_{\mathbf{T}}^{\hat{\gamma}} > 1200 \text{ GeV}$	[-0.12; 0.13]	[-0.13; 0.14]	[-0.16; 0.17]	[-0.28; 0.3]		
$p_{\mathbf{T}}^{\gamma}$ >1300 GeV	[-0.13; 0.14]	[-0.14; 0.15]	[-0.18; 0.19]	[-0.36; 0.37]		
Bound	[-0; 0]	[-0.023; 0.023]	[-0.057; 0.057]	[-0.18; 0.18]	[-0.21; 0.21]	[-0.24; 0.24]

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Оптимизация f_{T5} [2]

E _{clip} , TeV	2.7	2.6	2.5	2.4	2.3	2.2	2.1
p_{T}^{γ} >150 GeV	[-1; 1.1]	[-1; 1.2]	[-1.1; 1.2]	[-1.2; 1.3]	[-1.2; 1.4]	[-1.3; 1.5]	[-1.4; 1.6]
$p_{\rm T}^{\dot{\gamma}}$ >300 GeV	[-0.56; 0.66]	[-0.58; 0.69]	[-0.61; 0.73]	[-0.65; 0.78]	[-0.69; 0.83]	[-0.73; 0.89]	[-0.78; 0.96]
$p_{\mathbf{T}}^{\gamma}$ >400 GeV	[-0.4; 0.49]	[-0.42; 0.51]	[-0.45; 0.54]	[-0.47; 0.58]	[-0.5; 0.62]	[-0.54; 0.67]	[-0.58; 0.72]
$p_{\mathbf{T}}^{\gamma}$ >500 GeV	[-0.33; 0.4]	[-0.35; 0.42]	[-0.37; 0.45]	[-0.39; 0.48]	[-0.42; 0.52]	[-0.45; 0.56]	[-0.49; 0.61]
$p_{\mathbf{T}}^{\gamma}$ >600 GeV	[-0.29; 0.35]	[-0.31; 0.37]	[-0.33; 0.39]	[-0.35; 0.43]	[-0.38; 0.46]	[-0.41; 0.5]	[-0.45; 0.55]
$p_{\rm T}^{\gamma}$ >700 GeV	[-0.27; 0.32]	[-0.29; 0.34]	[-0.31; 0.36]	[-0.33; 0.4]	[-0.36; 0.43]	[-0.4; 0.48]	[-0.44; 0.53]
$p_{\mathbf{T}}^{\hat{\gamma}} > 800 \text{ GeV}$	[-0.26; 0.3]	[-0.28; 0.32]	[-0.3; 0.35]	[-0.33; 0.38]	[-0.36; 0.42]	[-0.41; 0.47]	[-0.46; 0.53]
$p_{\mathbf{T}}^{\hat{\gamma}} > 900 \text{ GeV}$	[-0.26; 0.3]	[-0.29; 0.32]	[-0.31; 0.35]	[-0.35; 0.39]	[-0.39; 0.44]	[-0.45; 0.51]	[-0.53; 0.59]
$p_{\mathbf{T}}^{\gamma}$ >1000 GeV	[-0.29; 0.32]	[-0.32; 0.35]	[-0.36; 0.39]	[-0.41; 0.45]	[-0.47; 0.52]	[-0.56; 0.61]	[-0.67; 0.72]
$p_{\rm T}^{\dot{\gamma}}$ >1100 GeV	[-0.33; 0.36]	[-0.38; 0.41]	[-0.43; 0.46]	[-0.51; 0.54]	[-0.6; 0.64]	[-0.72; 0.77]	[-0.86; 0.91]
$p_{\mathrm{T}}^{\hat{\gamma}} > 1200 \text{ GeV}$							
$p_{T}^{\gamma} > 1300 \text{ GeV}$							
Bound	[-0.27; 0.27]	[-0.32; 0.32]	[-0.37; 0.37]	[-0.44; 0.44]	[-0.52; 0.52]	[-0.62; 0.62]	[-0.75; 0.75]

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで 26.01.2022

23/38

Оптимизация f_{M0} [1]

E _{clip} , TeV	∞	5	4	3	2
$p_{\mathbf{T}}^{\gamma}$ >150 GeV	[-25; 25]	[-25; 26]	[-26; 27]	[-30; 30]	[-42; 43]
$p_{\mathbf{T}}^{\gamma}$ >300 GeV	[-14; 14]	[-14; 15]	[-15; 15]	[-17; 18]	[-25; 26]
$p_{\mathbf{T}}^{\gamma}$ >400 GeV	[-10; 11]	[-11; 11]	[-11; 11]	[-13; 13]	[-19; 20]
$p_{\mathbf{T}}^{\gamma}$ >500 GeV	[-8.7; 8.8]	[-8.9; 9]	[-9.3; 9.4]	[-11; 11]	[-17; 17]
$p_{\mathbf{T}}^{\gamma}$ >600 GeV	[-7.6; 7.7]	[-7.8; 7.8]	[-8.2; 8.3]	[-9.7; 9.8]	[-16; 16]
$p_{\mathbf{T}}^{\gamma}$ >700 GeV	[-7; 7]	[-7.1; 7.2]	[-7.6; 7.6]	[-9.2; 9.3]	[-17; 17]
$p_{\mathbf{T}}^{\gamma} > 800 \text{ GeV}$	[-6.5; 6.5]	[-6.7; 6.7]	[-7.2; 7.2]	[-9; 9]	[-19; 19]
$p_{\mathbf{T}}^{\gamma} > 900 \text{ GeV}$	[-6.3; 6.3]	[-6.5; 6.5]	[-7; 7]	[-9.2; 9.2]	[-23; 23]
$p_{\mathbf{T}}^{\gamma}$ >1000 GeV	[-6.5; 6.5]	[-6.7; 6.7]	[-7.4; 7.4]	[-10; 10]	[-31; 31]
$p_{\mathbf{T}}^{\gamma}$ >1100 GeV	[-6.7; 6.7]	[-7; 7]	[-7.8; 7.8]	[-11; 11]	[-39; 39]
$p_{\mathbf{T}}^{\gamma}$ >1200 GeV	[-6.9; 6.9]	[-7.2; 7.2]	[-8.3; 8.3]	[-13; 13]	
$p_{\mathbf{T}}^{\gamma} > 1300 \text{ GeV}$	[-7.8; 7.8]	[-8.3; 8.3]	[-9.8; 9.8]	[-18; 18]	
Bound	[-0; 0]	[-0.066; 0.066]	[-0.16; 0.16]	[-0.51; 0.51]	[-2.6; 2.6]

26.01.2022

イロト 不得 トイヨト イヨト

24 / 38

3

Оптимизация *f*_{M0} [2]

E _{clip} , TeV	1.5	1	0.9	0.8	0.7	0.6
$p_{\rm T}^{\gamma}$ >150 GeV	[-59; 61]	[-110; 120]	[-130; 140]	[-160; 170]	[-200; 210]	[-270; 280]
$p_{\rm T}^{\gamma}$ >300 GeV	[-36; 38]	[-74; 77]	[-92; 95]	[-120; 120]	[-160; 160]	[-220; 220]
$p_{\mathbf{T}}^{\gamma}$ >400 GeV	[-29; 30]	[-67; 68]	[-85; 85]	[-110; 110]	[-140; 140]	[-190; 190]
$p_{\mathbf{T}}^{\gamma}$ >500 GeV	[-28; 28]	[-70; 70]	[-88; 87]	[-110; 110]	[-140; 140]	[-190; 190]
$p_{\mathbf{T}}^{\gamma}$ >600 GeV	[-29; 29]	[-77; 77]	[-92; 92]	[-120; 120]	[-150; 150]	[-210; 210]
$p_{\mathbf{T}}^{\gamma} > 700 \text{ GeV}$	[-35; 35]	[-85; 85]	[-100; 100]	[-140; 140]	[-180; 180]	[-260; 260]
$p_{\mathbf{T}}^{\gamma} > 800 \text{ GeV}$	[-42; 42]	[-93; 93]	[-110; 120]	[-140; 140]	[-180; 180]	[-260; 260]
$p_{\mathbf{T}}^{\gamma} > 900 \text{ GeV}$	[-47; 47]	[-110; 110]	[-140; 140]	[-170; 170]	[-250; 250]	[-400; 400]
$p_{\mathbf{T}}^{\gamma}$ >1000 GeV	[-58; 58]	[-140; 140]				
$p_{\rm T}^{\dot{\gamma}}$ >1100 GeV						
$p_{\mathbf{T}}^{\hat{\gamma}} > 1200 \text{ GeV}$						
$p_{\mathbf{T}}^{\hat{\gamma}} > 1300 \text{ GeV}$						
Bound	[-8.1; 8.1]	[-41; 41]	[-63; 63]	[-100; 100]	[-170; 170]	[-320; 320]

3

25 / 38

イロト 不得 トイヨト イヨト

Результаты: f_{T0}

Non-unitarized limits. Expected: [-0.13; 0.12] TeV⁻⁴. Observed: [-0.095; 0.085] TeV⁻⁴.

Артур Семушин (НИЯУ МИФИ)

EWK $Z\gamma$ aQGC

26.01.2022 26 / 38

Результаты: f_{T5}

Non-unitarized limits. Expected: [-0.12; 0.13] TeV⁻⁴. Observed: [-0.089; 0.100] TeV⁻⁴.

Unitarized limits. $E_{clip} = 2.4 \text{ TeV}.$ Expected: [-0.35; 0.43] TeV⁻⁴. Observed: [-0.35; 0.42] TeV⁻⁴.

- 3

メロト メポト メヨト メヨト

Результаты: f_{T8}

 $\frac{\text{Non-unitarized limits.}}{\text{Expected: [-0.081; 0.081] TeV}^{-4}.}$ Observed: [-0.060; 0.060] TeV⁻⁴.

 $\label{eq:clip} \begin{array}{l} \underline{\text{Unitarized limits.}}\\ E_{\text{clip}} = 1.7 \ \text{TeV.}\\ \\ \text{Expected: [-0.53; 0.53] TeV^{-4}.}\\ \\ \text{Observed: [-0.52; 0.52] TeV^{-4}.} \end{array}$

Результаты: f_{T9}

Non-unitarized limits. Expected: [-0.17; 0.17] TeV⁻⁴. Observed: [-0.13; 0.13] TeV⁻⁴.

 $\label{eq:clip} \begin{array}{l} \underline{\text{Unitarized limits.}}\\ E_{\text{clip}} = 1.9 \ \text{TeV.}\\ \\ \text{Expected: [-0.81; 0.81] TeV^{-4}.}\\ \\ \text{Observed: [-0.81; 0.80] TeV^{-4}.} \end{array}$

イロト イポト イヨト イヨト 一日

Результаты: f_{M0}

Non-unitarized limits. Expected: [-6.3; 6.3] TeV⁻⁴. Observed: [-4.7; 4.7] TeV⁻⁴.

Unitarized limits. $E_{clip} = 0.7 \text{ TeV}.$ Expected: [-140; 140] TeV⁻⁴. Observed: [-160; 160] TeV⁻⁴.

Результаты: f_{M1}

Non-unitarized limits. Expected: [-11; 11] TeV⁻⁴. Observed: [-7.8; 7.8] TeV⁻⁴.

 $\label{eq:clip} \begin{array}{l} \underline{\text{Unitarized limits.}}\\ E_{\text{clip}} = 1 \ \text{TeV.}\\ \text{Expected: [-140; 130] } \ \text{TeV}^{-4}.\\ \text{Observed: [-150; 150] } \ \text{TeV}^{-4}. \end{array}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ○ ○ ○

Результаты: f_{M2}

<u>Non-unitarized limits.</u> Expected: [-2.6; 2.6] TeV⁻⁴. Observed: [-1.9; 1.9] TeV⁻⁴.

 $\label{eq:clip} \begin{array}{l} \underline{\text{Unitarized limits.}}\\ E_{\text{clip}} = 1 \ \text{TeV.}\\ \text{Expected: [-28; 28] } \text{TeV}^{-4}.\\ \text{Observed: [-32; 32] } \text{TeV}^{-4}. \end{array}$

<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

Имеющиеся наблюдаемые пределы, Т-семейство

Артур Семушин (НИЯУ МИФИ)

26.01.2022 33 / 38

3

・ロット 全部 マント・ロット

Имеющиеся наблюдаемые пределы, М-семейство

Артур Семушин (НИЯУ МИФИ)

26.01.2022 34 / 38

э

A D A A B A A B A A B A

Теоретический линейный предел: определение

С квадратичным слагаемым (обычный случай):

 $\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + f\mathcal{O} \rightarrow \mathcal{A} = \mathcal{A}_{\mathsf{SM}} + f\mathcal{A}_{\mathsf{BSM}} \rightarrow |\mathcal{A}|^2 = |\mathcal{A}_{\mathsf{SM}}|^2 + f2\mathsf{Re}\left(\mathcal{A}_{\mathsf{SM}}^{\dagger}\mathcal{A}_{\mathsf{BSM}}\right) + f^2|\mathcal{A}_{\mathsf{BSM}}|^2$

Без квадратичного слагаемого (линейный случай):
$$|\mathcal{A}|^2 = |\mathcal{A}_{SM}|^2 + f 2 \operatorname{Re} \left(\mathcal{A}_{SM}^{\dagger} \mathcal{A}_{BSM} \right) \ge 0, \quad \mathcal{A}_{SM} = \mathcal{A}_{EWK} + \mathcal{A}_{QCD}$$

 $\rightarrow N_{Z\gamma} = N_{SM} + f N_{int} \ge 0$

Это условие приводит к теоретическому ограничению на f: $N_{\text{int}} > 0 \rightarrow f_{\text{min}} = -\frac{N_{\text{SM}}}{N_{\text{int}}}, \qquad N_{\text{int}} < 0 \rightarrow f_{\text{max}} = -\frac{N_{\text{SM}}}{N_{\text{int}}}$

Артур Семушин (НИЯУ МИФИ)

Теоретический линейный предел: результаты

Coef.	^f то	^f т5	^f т8	^f т9	^f мo	f _{M1}	f _{M2}
$p_{\mathbf{T}}^{\gamma}$ >150 GeV	-12.6, 0.8%	12.6, 0.8%	-1430, 5.5%	-1940, 4.6%	2130, 2.7%	-6950, 3.1%	-1060, 2.4%
$p_{\rm T}^{\gamma}$ >300 GeV	-3.92, 1.3%	3.91, 1.3%	-446, 5.8%	-585, 4.8%	1080, 4.4%	-3400, 4.9%	-526, 3.9%
$p_{\mathbf{T}}^{\gamma}$ >400 GeV	-2.11, 1.8%	2.11, 1.8%	-235, 6.3%	-311, 5.3%	878, 6.8%	-2830, 7.7%	-431, 6%
$p_{\rm T}^{\dot{\gamma}}$ >500 GeV	-1.23, 2.7%	1.22, 2.7%	-132, 6.9%	-179, 6%	752, 10.5%	-2510, 12.3%	-386, 9.7%
$p_{\mathbf{T}}^{\gamma} > 600 \text{ GeV}$	-0.773, 3.6%	0.765, 3.6%	-85.1, 8%	-118, 7.2%	651, 15.2%	-2820, 23.1%	-324, 13.5%
$p_{\mathbf{T}}^{\gamma}$ >700 GeV	-0.51, 5%	0.505, 5%	-54.8, 9.4%	-75.7, 8.5%	684, 25.9%	-2110, 28.2%	-353, 23.8%
$p_{\mathbf{T}}^{\gamma}$ >800 GeV	-0.355, 7.1%	0.353, 7%	-34.5, 10.7%	-53, 10.6%	993, 57.3%	-3070, 62.9%	-385, 39.1%
$p_{\rm T}^{\dot{\gamma}} > 900 {\rm GeV}$	-0.247, 9.4%	0.248, 9.4%	-22.6, 12.9%	-35.9, 12.9%	-4460, 395.9%	-5630, 184.4%	-296, 47.7%
p_{T}^{γ} >1000 GeV	-0.2, 11.9%	0.199, 11.9%	-17.6, 15.4%	-28, 15.5%	-904, 108.9%	2230, 100%	-341, 73.3%
$p_{\mathrm{T}}^{\gamma} > 1100 \text{ GeV}$	-0.159, 16.5%	0.156, 16.5%	-12.9, 19.7%	-20.6, 19.7%			
$p_{\rm T}^{\gamma}$ >1200 GeV	-0.113, 24.8%	0.113, 24.8%	-9.25, 27.7%	-14.3, 27.6%			

Разрешим статистической ошибке теоретического предела быть не более 20% (это гарантирует, что флуктуация в 5σ не изменит знак предела).

Таким образом, дальнейшая оптимизация должна производиться с ограничением на p_{T}^{γ} не более жестким, чем 1100 ГэВ для Т-семейства и 500 ГэВ для М-семейства.

= 900

Линейные пределы: оптимизация

Coef.	^f то	^f т5	^f т8	^f т9	^f мo	f _{M1}	f _{M2}
$p_{\mathbf{T}}^{\gamma}$ >150 GeV	[-10.2; 8.5]	[-8.5; 10.2]	[-1170; 970]	[-1600; 1300]	[-1400; 1700]	[-5600; 4700]	[-860; 710]
$p_{\rm T}^{\gamma}$ >300 GeV	[-3.7; 3.3]	[-3.3; 3.7]	[-420; 380]	[-550; 500]	[-910; 1010]	[-3200; 2900]	[-490; 450]
$p_{\mathbf{T}}^{\gamma}$ >400 GeV	[-2.0; 2.1]	[-2.1; 2.0]	[-230; 230]	[-300; 310]	[-870; 850]	[-2800; 2800]	[-420; 430]
$p_{\rm T}^{\gamma}$ >500 GeV	[-1.2; 1.7]	[-1.6; 1.2]	[-130; 180]	[-180; 240]	[-1030; 750]	[-2500; 3500]	[-390; 530]
$p_{\mathbf{T}}^{\gamma} > 600 \text{ GeV}$	[-0.77; 1.46]	[-1.44; 0.77]	[-85; 162]	[-120; 220]			
$p_{\mathbf{T}}^{\hat{\gamma}} > 700 \text{ GeV}$	[-0.51; 1.40]	[-1.38; 0.51]	[-55; 151]	[-76; 209]			
$p_{\mathbf{T}}^{\hat{\gamma}} > 800 \text{ GeV}$	[-0.36; 1.38]	[-1.37; 0.35]	[-35; 136]	[-53; 208]			
$p_{\mathbf{T}}^{\gamma} > 900 \text{ GeV}$	[-0.25; 1.47]	[-1.48; 0.25]	[-23; 136]	[-36; 217]			
$p_{\rm T}^{\gamma}$ >1000 GeV	[-0.20; 1.74]	[-1.74; 0.20]	[-18; 155]	[-28; 247]			
$p_{\mathbf{T}}^{\hat{\gamma}} > 1100 \text{ GeV}$	[-0.16; 2.10]	[-2.05; 0.16]	[-13; 172]	[-21; 274]			

Результат оптимизации (выбор региона): $p_{\mathsf{T}}^{\gamma}>$ 800 ГэВ для Т-семейства и $p_{\mathsf{T}}^{\gamma}>$ 400 ГэВ для М-семейства.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Линейные пределы: результаты

Coef.	Expected limits, TeV ⁻⁴	Observed limits, TeV $^{-4}$
f _{T0}	[-0.36; 1.38]	[-0.36; 0.88]
f _{T5}	[-1.37; 0.35]	[-0.87; 0.35]
<i>f</i> _{T8}	[-35; 136]	[-35; 86]
f _{T9}	[-53; 208]	[-53; 132]
f _{M0}	[-870; 850]	[-1110; 670]
f_{M1}	[-2800; 2800]	[-2200; 3600]
f _{M2}	[-420; 430]	[-330; 540]

э

イロト イポト イヨト イヨト