Научно-исследовательская работа по физике элементарных частиц «Исследование источников фона космогенного происхождения в детекторе Darkside-20k»

Руководитель НИР, с.н.с. ОФН, НИЦ «Курчатовский институт»

И. Н. Мачулин

Студент гр. М20-115

Д. С. Голубков

Введение

Наиболее убедительными экспериментальными фактами существования скрытой массы, полученными из астрономических наблюдений, являются результаты измерения скоростей слоёв галактик Существует много кандидатов гипотетических частиц скрытой массы. Одним из кандидатов является Weakly Interacting Massive Particles (WIMP).

Эксперимент Darkside-20k

Временная проекционная камера (ТРС)

Расположение

• В италии в регионе Абруцци находится Национальная лаборатория Гран-Сассо на глубине ~3800 метров водного эквивалента, где в холле С находится эксперимент Borexino, рядом с которым планируется поместить Darkside-20k

 Нейтроны, образующиеся в результате взаимодействия космических мюонов, играют большую роль в создании фона при поиске редких событий. Таким образом необходимо использовать имитационные исследования для проектирования защиты экранов и прогнозирования уровней фона в установке.

схема beta-n активного изотопа - ¹⁷N

 Наиболее важными результатами являются выходы beta-n изотопов, так как нейтроны испускаемые при распаде рассеиваются на ядрах мишени и имитируют частицы WIMP.

isotope	Outer LAr	Inner LAr	Active LAr	PMMA-1 (1% Gd)	PMMA- 2	LAr box	sum	(β-,n)	(β-, 2n)	(β-, 3n)	number of neutrons	Half-life T1⁄2	Rejection (10 sec)	Rejection (10 sec) Active LAr
Ne26						2	2	0,13%			0,0026	197 ms	0,0	0,0
F24	1	1	1			8	11	5,90%			0,649	384 ms	0,0	0,0
F23	3	4	3			40	50	14,00%			7	2,23 s	0,3	0,0
F22	17	14	20			180	231	11,00%			25,41	4,23 s	4,9	0,4
022		1	1			10	12	1,00%			2,64	2,25 s	0,01	0,0
N22						1	1	34,00%	12,00%		0,34	23 ms	0,0	0,0
N20						1	1	42,90%			0,429	136 ms	0,0	0,0
N18	4	3		1	1	34	43	7,00%			3,01	619,2 ms	0,0	0,0
N17	10	15	15	2	3	102	147	95,00%			139,65	4,173 s	26,5	2,7
C18						1	1	31,50%			0,315	92 ms	0,0	0,0
C17		1				5	6	28,40%			1,704	193 ms	0,0	0,0
C16	1	1				11	13	97,90%			12,727	747 ms	0,0	0,0
B15					1	5	6	93,60%	0,40%		5,664	9,93 ms	0,0	0,0
B14	4	2	1	15	3	26	51	6,04%			3,0804	12,5 ms	0,0	0,0
B13	7	5	7	10	4	59	92	0,28%			0,2576	17,33 ms	0,0	0,0
Be14			1			2	3	98,00%	0,80%		2,94	4,35 ms	0,0	0,0
Be12	2	1	1	8		23	35	0,50%			0,175	21,50 ms	0,0	0,0
Li11						5	5	86,30%	4,10%	1,90%	5,01	8,75 ms	0,0	0,0
Li9	21	16	26	39	15	158	275	50,80%			139,7	178,3 ms	0,0	0,0
He8	2	2	1	5	4	45	59	16,10%			9,499	119,1 ms	0,0	0,0
Total	253	179	190	80	31	1802	2535				428,4764		31,9	3,2
number of neutrons	31,6615	32,0463	36,2771	23,561	12,3204	292,61 01	428,4 764							

β-,п переходы N17

Возможный β-,n переход O22

S_n = 5230 keV - энергия, необходимая для отделения нейтрона от F22

Возможный энергетический уровень F22 с наибольшей энергией излучаемого нейтрона E = 5750 keV

S_n = 10364 keV - энергия, необходимая для отделения нейтрона от Ne22

Возможный энергетический уровень Ne22 с наибольшей энергией излучаемого нейтрона E = 10749 keV

$$E_n = 385 \text{ keV}$$
 $E_{e-max} = 69 \text{ keV}$

Возможный β-,n переход F22 S_n = 5201 keV - энергия, необходимая для отделения нейтрона от Ne23

Возможный энергетический уровень Ne23 с наибольшей энергией излучаемого нейтрона E = 6445 keV

 $E_n = 1244 \text{ keV}$ $E_{e-,max} = 1995 \text{ keV}$

Возможный β-,n переход F23

Моделирование нейтронов от β-,n распадов, имитирующих регистрацию WIMP в детекторе Darkside-20k

Критерии отбора WIMP:

• NclusNR = 1

(количество образованных кластеров ядерной отдачи равно единице)

• IsFV30 = 1

(область образования кластера ограничено центральным цилиндрическим объёмом массой 30 тонн)

• abs(cl_z) < 100

(координата кластера по Z меньше 100 см по модулю)

• 7.5 < cl_ene < 50

(интересующая энергетическая область поиска WIMP от 7.5 кэВ до 50 кэВ)

cl_elec < cl_nucl

(энергия электронных рассеяний меньше энергии ядерных)

• EnergyER < 50

(сумма энергии, выделяемой кластерами после захвата нейтрона, ниже порога 50 кэВ в ТРС)

late_eneVeto_Ar < 200

(сумма энергии, выделяемой кластерами после захвата нейтрона, ниже порога 200 kbB в нейтронном вето)

Отбор (β-,n) распадов

100000 событий β-,n	O22	F22	F23	N17	N17 центр ТРС
nclusNR == 1	13129	9676	6527	7455	1241
IsFV30 == 1	38335	40932	33569	37189	55898
abs(cl_z) < 100	50697	51419	49205	50215	63966
7.5 < cl_ene < 50	14654	7206	30959	20224	12954
cl_elec < cl_nucl	95158	78864	89798	84772	94977
energyER < 50 && late_eneVeto_Ar < 200	11604	10741	794	742	39

Комбинированный отбор (β-,n) распадов

100000 events β-,n	O22	F22	F23	N17	N17 центр ТРС
nclusNR == 1 && IsFV30 == 1	3221	2655	1064	1642	923
&& abs(cl_z) < 100	1853	1459	597	905	831
&& 7.5 < cl_ene < 50	631	224	352	279	116
&& cl_elec < cl_nucl	631	209	351	278	113
&& energyER < 50 && late_eneVeto_Ar < 200	104	28	4	2	0

Итоговое количество событий

Изотопы	T1⁄2, c	Выход изотопов в активном Ar за 10 лет	Выход нейтронов в активном Ar за 10 лет	Кол-во нейтронов после отсечки вето 5 с	Итоговое кол-во после отбора
N17	4,173	15	139,65	6,21	1,24E-04
O22	2,25	1	0,12	2,14E-03	2,23E-06
F22	4,23	20	19,52	0,74	2,09E-04
F23	2,23	3	2,45	0,03	1,24E-06

Суммарное количество фоновых событий за 10 лет от данных изотопов равно: N = 3,36·10⁻⁴

Заключение

В ходе работы был смоделирован радиоактивный фон от космических лучей в полной геометрии детектора Darkside-20k. Получены результаты отбора нейтронов имитирующих WIMP от фоновых изотопов. Полученные результаты будут использоваться для анализа фонов детектора.

В будущем планируется провести расчёты полного выхода имитирующих нейтронов с учётом всех изотопов, образованных в чуствительной области детектора.

Спасибо за внимание