МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

(НИЯУ «МИФИ»)

УДК 539.123, 519.688

ОТЧЕТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Разработка методов расчёта и анализа спектров реакторных антинейтрино для фундаментальных и прикладных задач

Руководитель НИР,	О.А. Титов
к.фм.н.	
Студент	Д.В. Попов

Москва 2022

СОДЕРЖАНИЕ

B	веде	ние	3
1	Pea	кторные антинейтрино и их регистрация	7
2	Me	год конверсии	11
	2.1	Бета-распад	12
		2.1.1 Функция Ферми	13
		2.1.2 Поправки на конечный размер ядра	17
		2.1.3 Экранирование	20
		2.1.4 Радиационные поправки	22
		2.1.5 Слабый магнетизм	23
	2.2	Математическая модель конверсии КИ	26
	2.3	Анализ неопределенностей процедуры конверсии	29
	2.4	Доказательство устойчивости отношений выходов ОБР	32
3	Ко	нверсия КИ: решение проблемы RAA	36
4	Зак	лючение	40
C	писо	к использованных источников	41
Π	рилс	жение А. Вспомогательные данные	45
Π	рилс	жение В. Кумулятивные спектры реакторных	
		антинейтрино для $^{235}{ m U}$ и $^{238}{ m U}$	46

ВВЕДЕНИЕ

Впервые возможность использовать ядерные реакторы в качестве источников антинейтрино обсуждал Б.М. Понтекорво [1]. Принцип работы реактора основан на управляемой, самоподдерживающейся цепной реакции деления тяжелых ядер, которая сопровождается выделением энергии. При одном таком делении образуется 2 (или более) нестабильных осколка с избыточным числом нейтронов, которые претерпевают серию β -распадов для возвращения в долину стабильности. На один акт деления приходится в среднем 6 β -распадов, что соответствует рождению 6 электронных антинейтрино с энергиями до 8 МэВ. В реакторе с тепловой мощностью 1 ГВт будет рождаться порядка 10²⁰ электронных антинейтрино в секунду. Таким образом, в связи с тем, что реактор является интенсивным и чистым источником антинейтрино, знание спектров последних представляет большой интерес для фундаментальной науки (осцилляционные реакторные эксперименты [2-5]), а зависимость этих спектров от мощности реактора и его топливного состава открывает возможность прикладного применения спектроскопии реакторных антинейтрино (нейтринный метод мониторинга ядерных реакторов [6, 7]).

Существует два основных подхода к вычислению спектров реакторных антинейтрино: метод прямого суммирования и метод конверсии. Метод прямого суммирования (также называемый методом *ab initio* – методом расчёта из первых принципов) состоит в вычислении спектров антинейтрино от всех продуктов деления и их последующем сложении с учётом активности каждого продукта (см., например, обзор [8] и работу [9]). Всего в спектры электронов и антинейтрино дают вклад порядка нескольких тысяч ядерных переходов; для части переходов экспериментальные данные о схемах распада могут быть не вполне достоверными из-за эффекта пандемониума, а в ряде случаев данные совсем отсутствуют. Кроме того, зачастую имеется разброс в информации о кумулятивных выходах продуктов деления, приводимой в разных базах данных. Всё сказанное осложняет

3

предсказания спектров в рамках метода *ab initio*. Кроме того, метод предполагает, что при расчёте спектров для всех осколков деления используются одинаковые допущения и приближения, что не всегда правомерно (см., например, анализ, приведённый в работе [10]).

Метод конверсии основан на связи между бета-спектрами электронов и антинейтрино и заключается в следующем. Вначале экспериментально определяются кумулятивные спектры бета-электронов от каждого из делящихся изотопов ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu. Полученный спектр описывают как сумму некоторого количества (обычно около 30) синтетических бетаспектров, методом подгонки определяя граничную энергию и относительный вес каждого из них. Далее для каждого из таких переходов производится пересчёт электронного спектра в антинейтринный и полученные спектры суммируются. Отметим, что в результате конверсии получаются кумулятивные спектры, соответствующие эффективному времени облучения ядерного топлива $t_{\rm eff} \approx 1$ сутки — примерно столько проводится облучение мишеней ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu при измерении кумулятивных спектров β -частиц. Между тем, время облучения топлива в реакторе наиболее распространенного типа ВВЭР достигает четырех лет. Эта ситуация была проанализирована в работах [11, 12]; в частности, были рассчитаны добавки (off-equilibrium effect) к конверсионному спектру антинейтрино, которые в рамках самой процедуры конверсии не учитываются.

Кумулятивные бета-спектры от основных изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu впервые были измерены в ходе беспрецедентного эксперимента группы института Лауэ–Ланжевена (ILL) [13–16] (см. также работу [17], где результаты измерений приведены с более мелким шагом) в 80-ых годах, этой же группой была проведена конверсия полученных данных в спектры антинейтрино.

В 2011 году для получения кумулятивных спектров антинейтрино был применен смешанный подход, который сочетал учет известных экспериментальных данных по бета-переходам и теоретической модели *ab initio*. В работе Muller et al. [18] были использованы данные о нескольких тысячах реальных бета-переходов в имеющихся базах данных, вклад неизученных переходов суммировался с помощью подгонки к измеренному бетаспектру 5-ю виртуальными бета-переходами. Этот новый метод продемон-

4

стрировал систематический положительный сдвиг нормировки спектров приблизительно на 3%. относительно предыдущих оценок. Позднее, в работе Huber [19] алгоритм конверсии спектров бета-электронов с использованием только виртуальных бета-переходов был улучшен за счет более точного описания разрешенных бета-спектров с помощью введения ряда поправок. Результаты согласовывались с данными Muller et al. [18] и полученные спектры антинейтрино, обозначенные далее, как $\rho_{\nu, \text{HM}}^{239}$, $\rho_{\nu, \text{HM}}^{239}$, $\rho_{\nu, \text{HM}}^{239}$, $\rho_{\nu, \text{HM}}^{241}$ (т.н. модель Huber-Muller), стали использоваться для анализа реакторных нейтринных экспериментов.

С момента открытия в экспериментах на ядерном реакторе, детектирование антинейтрино осуществляется, в основном, по реакции обратного бета-распада (OБР):

$$\overline{\nu}_e + p \to n + e^+ . \tag{1}$$

Интенсивность взаимодействий реакторных антинейтрино обычно характеризуется величиной сечения, усредненного по числу нейтрино в акте деления — взвешенного сечения ОБР (в литературе можно встретить и другие названия — сечение на акт деления и выход реакции ОБР) [20,21]:

$$\sigma^{i} = \int_{E_{\min}}^{E_{\max}} \rho_{\nu}^{i}(E) \ \sigma_{\text{IBD}}(E) \ \mathrm{d}E, \qquad (2)$$

где $\sigma_{\text{IBD}}(E)$ — сечение реакции обратного бета-распада, $\rho_{\nu}^{i}(E)$ — спектр реакторных антинейтрино *i*—ого изотопа, E — энергия антинейтрино. Оказалось, что измеренный на стандартном удалении 15 — 100 м от реактора выход реакции ОБР в среднем на 5% меньше, чем ожидаемый по данным работ [18,19]. Данную проблему, называемую в литературе реакторной антинейтринной аномалией ("Reactor Antineutrino Anomaly", RAA [22]), обычно связывают с двумя причинами:

— существованием стерильных нейтрино или другой новой физики;

— неточностью модельных спектров антинейтрино ²³⁵U и ²³⁹Pu, вызванных либо ошибками в измерениях спектров β -частиц группы ILL, либо ошибками самой процедуры конверсии, либо и тем, и другим (отметим, что расхождения наблюдались и с рассчитанным *ab initio* спектром ²³⁸U).

Предварительные данные эксперимента по измерению отношений ку-

мулятивных бета-спектров ²³⁵U и ²³⁹Pu, выполненного в Курчатовском институте (КИ), показывают, что аналогичное отношение спектров ILL [13–16] завышено примерно на 5% [24]. В экспериментах Daya Bay [2,3], RENO [4] и STEREO [5] наблюдается дефицит антинейтрино от ²³⁵U по сравнению с предсказаниями модели HM, в то время как данные Daya Bay [2,3] и RENO [4] для ²³⁹Pu согласуются с этой моделью. С учётом этого факта и результатов КИ [24], в работе [25] группой КИ был произведён пересчёт спектра антинейтрино от ²³⁵U — спектр $\rho_{\nu, \text{HM}}^{235}$ модели HM был поделен на масштабный коэффициент $\langle R \rangle \approx 1.05$, который является средним значением дифференциальной спектральной поправки R(E), полученной группой КИ [24], описывающей отклонение кумулятивных бета-спектров ²³⁵U использовалась нормировка для бетаспектра ²³⁵U из работы ILL [15], в [25] были скорректированы и спектры антинейтрино для ²³⁸U.

Перед настоящей работой стояли следующие задачи:

— описать алгоритм конверсии, разработанный и используемый в предсказании спектров реакторных антинейтрино (модель KI);

— сравнить результаты конверсии на основе моделей HM и KI;

— продемонстрировать связь отношения бета-спектров 235 U и 239 Pu с отношением выходов ОБР $\sigma^{235}/\sigma^{241}$;

— исследовать устойчивость отношения $\sigma^{235}/\sigma^{241}$ относительно вариаций процедуры конверсии.

1. РЕАКТОРНЫЕ АНТИНЕЙТРИНО И ИХ РЕГИСТРАЦИЯ

Полный реакторный спектр представляется как [8,18]

$$S_{\nu}(E_{\nu}) = \sum_{i} f_{i} \cdot \rho_{\nu}^{(i)}(E_{\nu}), \qquad (1.1)$$

где f_i — число делений *i*-ого изотопа, а $S_i(E_{\nu})$ — соответствующий спектр антинейтрино *i*—ого изотопа, нормированный на одно деление.

Тепловая мощность реактора W_{th} связана с параметрами f_i [8]:

$$W_{th} = \sum_{i} f_i \cdot (E_i - E_\nu + E_n), \qquad (1.2)$$

где E_i — энергия, выделяющаяся при делении *i*-ого изотопа, E_{ν} — энергия антинейтрино, E_n — энергия, обусловленная захватами нейтронов в материалах реактора. Величину ($E_i - E_{\nu} + E_n$), которую мы будем обозначать ε_i , обычно называют эффективной тепловой энергией. Под *i*-тыми изотопами будем понимать ²³⁵ U, ²³⁸ U, ²³⁹ Pu и ²⁴¹ Pu, так как распады именно этих элементов вносят основной вклад (более 99%) в тепловую мощность реактора. Величины ε_i для них рассчитаны с хорошей точностью [8].

Спектр антинейтрино $\rho_{\nu}^{(i)}(E_{\nu})$ представляется суммой по всем делениям *i*-ого изотопа [18]:

$$\rho_{\nu}^{(i)}(E_{\nu}) = \sum_{f=1}^{N_f} A_f \, \rho_{\nu}^{(f)}(E_{\nu}, Q_f) \,, \qquad (1.3)$$

где A_f — активность f-ого продукта деления, нормированная на распад iого изотопа, Q_f — граничная энергия бета-распада. $\rho_f(E_{\nu})$ в свою очередь является суммой по всем модам (ветвям), связывающим основное состояние родительского ядра с различными возбужденными состояниями дочерних ядер [18]:

$$\rho_{\nu}^{(f)}(E_{\nu}) = \sum_{b=1}^{N_b} \mathrm{BR}_f^b \; \rho_{\nu}^{(b)}(E_{\nu}, Q_f, Z_f, A_f) \,, \tag{1.4}$$

где BR_f^b — коэффициент ветвления (branching) — доля f-ых ядер, распадающихся по данной b-ой ветви относительно всех f-ых ядер, Z_f и A_f заряд и атомный номер f-ого ядра соответственно.

Одиночный бета-спектр $\rho_{\beta}^{(b)}$ имеет вид [39]

$$\rho_{\beta}^{(b)} = k^{(b)} \cdot p_{\beta} E_{\beta} (Q_f - T_{\beta})^2 \cdot F(Z_f, E_{\beta}) \cdot C^{(b)}(E_{\beta}) \cdot \delta^{(b)}(Z_f, A_f, E_{\beta}), \quad (1.5)$$

где $k^{(b)}$ — нормировочный множитель, $p_{\beta}, T_{\beta}, E_{\beta}$ — модуль 3-импульса, кинетическая и полная энергии электрона соответственно, $F(Z_f, E_{\beta})$ функция Ферми, описывающая кулоновское взаимодействие β -электрона с дочерним ядром. Множитель $C^{(b)}(E_{\beta})$ — фактор формы — включает в себе ядерный матричный элемент и зависит от запрещенности перехода (в случае разрешенных переходов $C_f^b(E_{\beta}) = 1$). Наконец, множитель $\delta^{(b)}(Z_f, A_f, E_{\beta})$ содержит различные поправки к одиночному спектру (связанные, например, с конечными размерами ядер, экранированием дочернего ядра от β -электронов электронами с атомных оболочек и т.д.), наиболее существенные из которых будут далее обсуждаться дополнительно.

Для получения одиночного спектра антинейтрино достаточно сделать замену в выражении (1.5), соответствующую закону сохранения энергии: $T_{\beta} \rightarrow Q_f - T_{\beta}$ и изменить поправки, входящие в $\delta^{(b)}(Z_f, A_f, E_{\beta})$, если для антинейтринного спектра они имеют отличный вид, чем для бета-спектра.

Связь потока реакторных антинейтрино от N ядерных реакторов с кумулятивными спектрами реакторных антинейтрино от основных изотопов $i = {}^{235}$ U, 238 U, 239 Pu, 241 Pu дается следующим выражением:

$$\Phi_{\nu}(E_{\nu}) = \sum_{r=1}^{N} \sum_{i} \frac{W_{th}^{(r)}}{\varepsilon_{i}} \frac{f_{i}^{(r)} \rho_{\nu}^{(i)}(E_{\nu})}{4\pi L_{r}^{2}}, \qquad (1.6)$$

где $W_{th}^{(r)}$ — тепловая мощность реактора под номером r, находящегося на расстоянии L_r до точки наблюдения.

Для регистрации антинейтрино, как было отмечено выше, в основном используется реакция обратного бета-распада (ОБР):

$$\overline{\nu}_e + p \to n + e^+, \tag{1.7}$$

имеющая кинематический порог [20,21]

$$E_{\rm thr} = \frac{(m_n + m_e)^2 - m_p^2}{2m_p} \approx 1.806 \text{ M} \cdot \text{B} , \qquad (1.8)$$

где m_n, m_p и m_e — массы нейтрона, протона и электрона соответственно.

Сечение реакции ОБР в наиболее общем виде представлено в работах [20,21]. В релятивистски-инвариантной форме дифференциальное сечение ОБР имеет вид [20]:

$$\frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}t} = \frac{G_F^2 |V_{ud}|^2}{4\pi (s - m_p^2)^2} \sum_{i=1}^7 A_i(s, t) , \qquad (1.9)$$

где G_F — постоянная Ферми слабого взаимодействия, V_{ud} — ud–элемент СКМ-матрицы смешивания, $s = (p_p^{\mu} + p_{\nu}^{\mu})^2, t = (p_e^{\mu} - p_{\nu}^{\mu})^2$ — мандельштамовские переменные, p^{μ} — 4-импульс. Явный вид функций $A_i(s,t)$ можно найти в приложении работы [20].

В системе покоя протона, где $s=2m_pE_\nu, t=m_n^2-m_p^2-2m_p(E_\nu-E_e),$ дифференциальное сечение ОБР записывается как

$$\frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}E_e}(E_e, E_\nu) = 2m_p \frac{\mathrm{d}\sigma_{\mathrm{IBD}}}{\mathrm{d}t}.$$
(1.10)

Сечение реакции ОБР крайне мало (порядка 10^{-43} см²) при энергиях реакторных антинейтрино, поэтому для эффективной регистрации необходимы достаточно большие объемы рабочего вещества детектора, в качестве которого обычно используют сцинтиллятор с высоким содержанием протонов. Рожденный в результате ОБР позитрон забирает большую часть энергии реакции, которую затем достаточно быстро (за несколько наносекунд) теряет в рабочем веществе за счет ионизационных и радиационных потерь, после чего происходит аннигиляция позитрона с электронов вещества в два γ -кванта с энергиями $m_e = 0.511$ МэВ. Рожденный в результате ОБР нейтрон замедляется и диффундирует в среде до момента захвата протоном с последующим испусканием γ -кванта с энергией 2.2 МэВ. Происходит это примерно через 200 мкс после реакции ОБР. В результате описанного процесса на выходе детектора появляются два сигнала — быстрый, от аннигиляции, и запаздывающий, от захвата нейтрона, являющийся естественным триггером реакции, при помощи которых можно рассчитать энергию позитрона и реконструировать энергию провзаимодействовавшего антинейтрино.

Восстановление спектра позитронов позволяет экспериментально получить выход реакции ОБР. Для изотопов ²³⁵U и ²³⁹Pu взвешенные сечения были впервые получены коллаборациями Daya Bay [2,3] и RENO [4] в ходе многолетнего набора статистики. Кроме того, коллаборация Daya Bay получила спектры позитронов в потоках антинейтрино ²³⁵U и ²³⁹Pu [3], что создает реальные предпосылки точного определения спектров антинейтрино ρ_{ν}^{235} и ρ_{ν}^{239} .

2. МЕТОД КОНВЕРСИИ

По результатам эксперимента ILL [13–15] были получены кумулятивные бета-спектры от трех основных изотопов. Для преобразования бетаспектров в спектры антинейтрино была предложена следующая процедура: экспериментальный спектр *i*-ого изотопа был аппроксимирован функцией

$$\rho^{(i)}(E_{\beta}) = \sum_{n=1}^{N} a_n^{(i)} \ \rho_{\beta}(E_{\beta}, E_{0\,n}^{(i)}) \ , \qquad (2.1)$$

представляющей из себя сумму из N (для каждого *i*-ого изотопа число N выбиралось индивидуально) виртуальных одиночных бета-ветвей. По итогам аппроксимации были получены значения нормировочных коэффициентов (амплитуд) и конечных энергий $\{a_n^{(i)}, E_{0n}^{(i)}\}$ для каждого изотопа, после чего по известной связи $\rho_\beta(E_\beta)$ и $\rho_\nu(E_\nu)$ были рассчитаны соответствующие кумулятивные спектры антинейтрино.

Данная процедура расчета антинейтринных спектров в литературе получила названия метода конверсии и активно обсуждалась авторами достаточно длительное время. Так, в работе [31] был проведен анализ процедуры на Монте–Карло данных и получены ограничения на реализацию конверсии, гарантирующие погрешность преобразования порядка 1% в интервале энергий от 1 до 8 МэВ.

В работе Huber [19] предложена модель, реализующая более точную конверсию, чем модель группы ILL, с использованием дополнительных различных поправок к одиночным спектрам, которые учитываются в каждой ветви, подробно описан и рассчитан вклад систематических погрешностей самой процедуры.

2.1. БЕТА-РАСПАД

Для описание разрешенных бета-спектров было использовано следующее приближение:

$$\rho_{\beta}(T_{\beta}) = k p_{\beta} E_{\beta} (Q - T_{\beta})^2 F(Z, E_{\beta}) L_0(Z, E_{\beta}) C(Z, E_{\beta}, Q) S(Z, E_{\beta}) \times G_{\beta}(E_{\beta}, Q) (1 + \delta_{\text{WM}}), \qquad (2.2)$$

где k — нормировка, p_{β} — модуль импульса электрона, T_{β} и E_{β} — кинетическая и полная энергии электрона соответственно, Q — энергия реакции (суммарная кинетическая энергия электрона и антинейтрино), Z — заряд дочернего ядра, $F(Z, E_{\beta})$ — функция Ферми. Для уточнения формы спектра были использованы поправки с величиной вклада только более 1%: $L_0(Z, E_{\beta})$ и $C(Z, E_{\beta}, Q)$ — поправки на конечный радиус ядра и слабого взаимодействия, $S(Z, E_{\beta})$ — поправка на экранирование, $G_{\beta}(E_{\beta}, Q)$ — радиационная поправка, $(1 + \delta_{\rm WM})$ — поправка на слабый магнетизм.

Спектр антинейтрино $\rho_{\nu}(E_{\nu})$ получается заменами $T_{\beta} \to Q - T_{\beta}$ и $G_{\beta} \to H_{\nu}$, где H_{ν} — радиационная поправка для спектра антинейтрино.

Отметим, что порядка 25–30 % переходов от общего числа в реальном реакторном спектре являются запрещенными. В работе [33] была исследована чувствительность отношения кумулятивных спектров бета-частиц и антинейтрино к наличию запрещенных переходов на основе метода *ab initio*; в этой же работе показано, что

$$1.00 \le \left(\frac{\rho_{\beta}}{\rho_{\nu}}\right) \left(\frac{\rho_{\nu}^{a}}{\rho_{\beta}^{a}}\right) \le 1.01 , \qquad (2.3)$$

где ρ_{β}, ρ_{ν} — реальные кумулятивные спектры, содержащие запрещенные переходы, $\rho_{\beta}^{a}, \rho_{\nu}^{a}$ — кумулятивные спектры, построенные с использованием только разрешенных переходов. В контексте процедуры конверсии спектр ρ_{β} соответствует экспериментальным данным ILL, ρ_{β}^{a} — подгоночному кумулятивному бета-спектру, который по своему построению в пределах погрешностей совпадает с ρ_{β} . Из этого и из результата [33] (выражение (2.3)) следует, что реальный спектр реакторных антинейтрино отличается от конверсионного, содержащего только разрешенные переходы, менее, чем на 1%, что оправдывает использование только разрешенных переходов при реализации процедуры конверсии.

Обсудим каждую из предложенных поправок, её происхождение и вклад в форму одиночного спектра.

2.1.1. ФУНКЦИЯ ФЕРМИ

Функция Ферми F(Z, E) описывает кулоновское взаимодействие точечного дочернего ядра с β -электроном. Формально она определяется как [35]

$$F(Z, E_{\beta}) = \frac{|\Psi_{\text{Coulomb}}|^2}{|\Psi_{\text{free}}|^2}, \qquad (2.4)$$

где Ψ_{free} — свободное решение уравнения Дирака, Ψ_{Coulomb} — решение уравнения Дирака с кулоновским потенциалом. Явный вид функции Ферми описывается следующим уравнением [35]:

$$F(Z, E) = 2(\gamma + 1)(2p_{\beta}R)^{(2\gamma - 1)}e^{(\pi\alpha Z E_{\beta}/p_{\beta})} \cdot \frac{|\Gamma(\gamma + i\alpha Z E_{\beta}/p_{\beta})|^{2}}{|\Gamma(2\gamma + 1)|^{2}}, \quad (2.5)$$

где $p_{\beta} = \sqrt{E_{\beta}^2 - m_{\beta}^2}$, — модуль 3-импульса электрона, $\gamma = \sqrt{1 - (\alpha Z)^2}$, α – постоянная тонкой структуры, $\Gamma(z)$ — гамма-функция комплексного аргумента, R = R(A) — радиус ядра, для вычисления которого используем формулу Элтона [36]:

$$R(A) = 1.121A^{1/3} + 2.426A^{-1/3} - 6.614/A \text{ } \text{фм.}$$
(2.6)

На рисунке 2.1 представлен график функции Ферми (2.5) для Z = 46.

Рисунок 2.1 — Функция Ферми как функция кинетической энергии электрона

На следующих рисунках представлены нормированные спектры электронов и антинейтрино, иллюстрирующие вклад функции Ферми.

Рисунок 2.2 — Спектр электронов бета-распада в зависимости от кинетической энергии электрона $T_{\beta}, Z = 46, Q = 3$ МэВ.

Рисунок 2.3 — Спектр антинейтрино бета-распада в зависимости от энергии антинейтрино E_{ν} , Z = 46, Q = 3 МэВ.

В случае метода конверсии важную роль играет не нормировка спектра (она находится путем подгонки), а его форма. По этой причине поступим следующим образом: пусть Δ — какая-либо поправка к одиночному бета-спектру (или спектру антинейтрино). Определим вклад поправки Δ в форму бета-спектра как

$$\widetilde{\Delta} = \frac{\widetilde{k} \, p_{\beta} \, E_{\beta} (E_0 - E_{\beta})^2 \cdot \Delta}{k \, p_{\beta} \, E_{\beta} (E_0 - E_{\beta})^2} = \frac{\widetilde{k}}{k} \cdot \Delta \,, \qquad (2.7)$$

где \tilde{k} — нормировка ρ_{β} с учетом поправки Δ , а k — нормировка ρ_{β} без учета поправки. Со спектрами антинейтрино поступим аналогично. Заметим, что даже если Δ не зависит от энергии реакции Q, то $\tilde{\Delta}$ в свою очередь уже является функцией Q (эта зависимость неявно заложена в нормировочных коэффициентах \tilde{k} и k). В дальнейшем мы, обсуждая вклад какой-либо поправки в форму спектра, по умолчанию будем подразумевать именно нормированную поправку, согласно выражению (2.7).

Рассмотрим $\widetilde{F}(Z, E)$ — вклад в форму одиночного спектра от функции Ферми для Q = 3 МэВ и Q = 6 МэВ:

Рисунок 2.4 — Вклад функции Ферми в форму одиночного бета-спектра, Z=46.

Рисунок 2.5 — Вклад функции Ферми в форму одиночного спектра антинейтрино, Z = 46.

2.1.2. ПОПРАВКИ НА КОНЕЧНЫЙ РАЗМЕР ЯДРА

При рассмотрении вместо точечного ядра ядра конечного размера, решить уравнение Дирака и получить выражение для уточненной функции Ферми F(Z, E) аналитически не представляется возможным. По этой причине в литературе используют различные приближения, связанные с распределениями электрического заряда $\rho_{\rm Cl}$ в ядре. Так, например, ядро можно представить в виде равномерно заряженного шара, радиус которого R подгоняется таким образом, чтобы получить правильное значение $\langle r^2 \rangle^{1/2}$ дочернего ядра [39].

Численное решение уравнения Дирака в такой модели для стабильных ядер с $R = r_0 A^{1/3}$ было получено [34], а затем расширено [35] для всех изотопов. Для перехода от точечного ядра к ядру конечного размера достаточно умножить функцию Ферми $F_0(Z, E)$ на выражение $L_0(Z, E)$, которое в модели [35] имеет вид:

$$L_0^{\text{Wil.}}(Z, E) = 1 + \frac{13(\alpha Z)^2}{60} - ER\alpha Z \frac{(41 - 26\gamma)}{15(2\gamma - 1)} - \alpha ZR\gamma \frac{17 - 2\gamma}{30E(2\gamma - 1)} + a_{-1}\frac{R}{E} + \sum_{n=0}^5 a_n (ER)^n + 0.41(R - 0.0164)(\alpha Z)^{4.5}, \quad (2.8)$$

$$a_n = \sum_{j=1}^6 b_{j,n} \; (\alpha Z)^j$$

где $\gamma = \sqrt{1 - (\alpha Z)^2}$, значения коэффициентов $b_{j,n}$ представлены в таблице A1.

Рисунок 2.6 иллюстрирует вклад поправки конечного размера $L_0^{\text{Wil.}}$ в форму спектров.

Рисунок 2.6 — Вклад поправки конечного размера $L_0^{\text{Wil.}}$ в форму спектров, Z = 46, Q = 6 МэВ.

Из рисунка 2.6 видно, что изменение формы достигает порядка 2-4% при Q = 6 МэВ (при $Q \approx 1-2$ МэВ вклад будет порядка 1-2%).

Помимо представленной выше модели, существует несколько других подходов. Так, в работе [8] рассматриваются более простые поправки вида:

$$L_0^{\text{Vog.}}(Z, E) = 1 - \frac{10}{9} Z \alpha RE$$
, (2.9)

$$L_0^{\text{Hayes}}(Z, E) = 1 - \frac{8}{5} Z \alpha R E \left(1 + \frac{9}{28} \frac{m_e^2}{E^2} \right) .$$
 (2.10)

Заметим, что выражения (2.8 - 2.10) представляются разложениями по малым величинам (αZ) \approx 0.34 (при $Z \approx$ 46) и (ER) \approx 0.24 (при $E \approx$ 8 МэВ и $R \approx$ 6 фм), причем (2.9) и (2.10) даны до первого порядка по (αZER). Исходя из этого, выражение (2.8) представляется более точным, поэтому в модели конверсии КИ используется именно оно, т.е. $L_0 = L_0^{\text{Wil.}}$.

Описанная выше функция L_0 связана с конечным размером дочернего ядра при рассмотрении электромагнитного взаимодействия и является дополнением к функции Ферми. Помимо неё существует поправка на конечный размер родительского ядра, связанная уже с неточечностью слабого взаимодействия (а именно — с конечными длинами волн лептонов и распределением нуклонов внутри ядра) [35]. Её явный вид зависит от разрешенности и типа перехода. В случае разрешенных переходов гамовтеллеровского типа она описывается следующим уравнением [35, 39]:

$$C(Z, E, E_0) = 1 + C_0 + C_1 \cdot E + C_2 \cdot E^2, \qquad (2.11)$$

где

$$C_{0} = -\frac{233}{630}(\alpha Z)^{2} - \frac{(E_{0}R)^{2}}{5} + \frac{2}{35}E_{0}R\alpha Z,$$

$$C_{1} = -\frac{21}{35}R\alpha Z + \frac{4}{9}E_{0}R^{2},$$

$$C_{2} = -\frac{4}{9}R^{2}$$

На рисунке 2.7 показан вклад поправки $C(Z, E, E_0)$ в форму одиночных спектров, а на рисунке 2.8 — результирующий вклад обоих поправок конечного размера.

Рисунок 2.7 — Вклад поправки конечного размера $C(Z, E, E_0), Z = 46, Q = 6$ МэВ.

Рисунок 2.8 — Итоговый вклад поправок конечного размера, $Z=46,\,Q=6$ МэВ.

Из рисунков видно, что вклад $C(Z, E, E_0)$ меняет форму на $\approx 1.5 - 2.5\%$. Итоговый же вклад эффектов конечного размера может достигать до 6%.

2.1.3. ЭКРАНИРОВАНИЕ

Выбор поправки на экранирование S также неоднозначен ввиду существования различных моделей потенциала экранирования. Тем не менее, анализ, представленный в работе [39], показывает, что основные модели экранирования согласуются друг с другом в пределах процента. По этой причине мы используем простое выражение $S(Z, E_{\beta})$, полученное в работе Behrens, Buhring [40] и наиболее широко применяемое в литературе:

$$S(Z, E) = \begin{cases} \frac{\bar{E}}{\bar{E}} \left(\frac{\bar{p}}{p}\right)^{(2\gamma-1)} e^{\pi(\bar{y}-y)} \frac{|\Gamma(\gamma+\mathrm{i}\bar{y})|^2}{|\Gamma(\gamma+\mathrm{i}y)|^2}, & \text{если } \bar{E} > m_e \\ 1, & \text{если } \bar{E} < m_e \end{cases}$$
(2.12)

где

$$\bar{E} = E - V_0, \ \bar{p} = \sqrt{\bar{E}^2 - m_e^2}, \ y = \frac{\alpha Z E}{p}, \ y = \frac{\alpha Z \bar{E}}{\bar{p}},$$

*V*₀ — потенциал экранирования:

$$V_0 = \alpha^2 (Z - 1)^{4/3} N(Z - 1), \qquad (2.13)$$

N(Z) — линейная интерполяция значений, представленных в таблице A2.

На рисунке 2.9 представлен вклад в форму одиночных спектров от поправки экранирования.

Рисунок 2.9 — Вклад поправки на экранирование в форму одиночного спектра, Z = 46, Q = 6 МэВ.

Как видно из рисунка 2.9, изменение формы спектра за счет экранирования может достигать до 2.5% при $Q \approx 6$ МэВ (при $Q \approx 2$ МэВ получим изменение формы на 1%, а при $Q \approx 8$ МэВ форма спектра изменится примерно на 2%).

2.1.4. РАДИАЦИОННЫЕ ПОПРАВКИ

Радиационные поправки учитывают испускание виртуальных и реальных фотонов при взаимодействии заряженных частиц, участвующих в реакции бета-распада.

Поправки первого порядка по α были вычислены в работах [41,42] и имеют следующий вид:

$$G_{\beta}(E_{\beta}, E_{0}) = 1 + \alpha / (2\pi) \cdot g_{\beta}(E_{\beta}, E_{0}),$$

$$H_{\nu}(\hat{E}, E_{0}) = 1 + \alpha / (2\pi) \cdot h_{\nu}(\hat{E}, E_{0}),$$
(2.14)

где

$$g_{\beta} = 3 \ln \left(\frac{m_N}{m_e}\right) - \frac{3}{4} + 4 \left(\frac{\tanh^{-1}\beta}{\beta} - 1\right) \left[\frac{E_0 - E_{\beta}}{3E_{\beta}} - \frac{3}{2} + \ln \left(\frac{2(E_0 - E_{\beta})}{m_e}\right)\right] + \frac{4}{\beta} L \left(\frac{2\beta}{1+\beta}\right) + \frac{1}{\beta} \tanh^{-1}\beta \cdot \left[2(1+\beta^2) + \frac{(E_0 - E_{\beta})^2}{6E_{\beta}^2} - 4 \tanh^{-1}\beta\right], \quad (2.15)$$

$$h_{\nu} = 3\ln\left(\frac{m_N}{m_e}\right) + \frac{23}{4} + \frac{8}{\hat{\beta}}L\left(\frac{2\hat{\beta}}{1+\hat{\beta}}\right) + 8\left(\frac{\tanh^{-1}\hat{\beta}}{\hat{\beta}} - 1\right) \cdot \\ \cdot \ln\left(\frac{2\hat{E}\hat{\beta}}{m_e}\right) + 4\frac{\tanh^{-1}\hat{\beta}}{\hat{\beta}}\left(\frac{7+3\hat{\beta}^2}{8} - 2\tanh^{-1}\hat{\beta}\right).$$
(2.16)

Здесь m_N — масса нуклона, $\beta = p_\beta/E_\beta$, $\hat{E} = E_0 - E_\nu$, $\hat{\beta} = \hat{p}/\hat{E}$. Функция L(x), фигурирующая в (2.15) — (2.16), есть функция Спенса, определяемая как

$$L(x) = \int_{0}^{x} \frac{\ln(1-t)}{t} \, \mathrm{d}t \,. \tag{2.17}$$

На рисунке 2.10 показан вклад радиационных поправок в бета-спектр и спектр антинейтрино.

В случае бета-спектра изменение формы составляет порядка 6%, в случае спектра антинейтрино порядка 0.5%.

Рисунок 2.10 — Вклад радиационных поправок в форму одиночного спектра, Q = 8 МэВ.

Отметим, что для h_{ν} в первом порядке по α существует несколько более точная, но не аналитическая модель Batkin–Sundaresan [43] — в среднем, вклады [42] и [43] отличаются друг от друга на 5%, чем можно пренебречь с учетом малости самой поправки h_{ν} , характерный вклад которой в форму спектра составляет порядка 1% и проявляется только в жесткой области, что иллюстрирует рисунок 2.10.

2.1.5. СЛАБЫЙ МАГНЕТИЗМ

Слабый магнетизм вызван вкладом дополнительного формфактора, кроме g_a и g_v в слабое взаимодействие, что эффективно приводит в взаимодействию магнитного момента ядра и β —электрона. В случае разрешенных переходов гамов-теллеровского типа поправка имеет вид [44]:

$$\delta_{\rm WM} = \frac{4}{3} E_{\beta} \left[\frac{\mu_{\upsilon} + \frac{\langle J_f | \vec{\Lambda} | J_i \rangle}{\langle J_f | \vec{\Sigma} | J_i \rangle}}{2m_N g_A} \right] \left(2 - \frac{m_e^2}{E_{\beta}^2} - \frac{E_0}{E_{\beta}} \right) \,, \tag{2.18}$$

где m_N — масса нуклона, g_A — аксиальный формфактор (при низких энергиях его можно считать постоянной величиной), μ_v — магнитный момент нуклона, $\vec{\Sigma} = \sum_{i} \tau_{i} \vec{\sigma}_{i}$ — оператор спина, $\vec{\Lambda} = \sum_{i} \tau_{i} \vec{l}_{i}$ — оператор углового момента. Здесь $\vec{l}_{i} = [\vec{r}_{i} \times \vec{p}_{i}]$ — орбитальный момент *i*—ого нуклона, $\vec{\sigma}_{i} = 2\vec{S}_{i}, \vec{S}_{i}$ — спин *i*—ого нуклона.

Строго говоря, отношение матричных элементов $\frac{\langle J_f | \vec{\Lambda} | J_i \rangle}{\langle J_f | \vec{\Sigma} | J_i \rangle}$ необходимо рассчитывать для каждого перехода индивидуально, однако часто в литературе для простоты его полагают равным -1/2. Данное приближение было подробно рассмотрено в работе [44], там же было показано, что оно вносит менее 1% неопределенности в кумулятивные спектры антинейтрино.

Таким образом, окончательно поправка слабого магнетизма имеет вид:

$$\delta_{\rm WM} \approx \frac{4}{3} E_{\beta} \frac{\mu_{\nu} - 1/2}{g_A m_N} \left(1 - \frac{m_e^2}{2E_{\beta}^2} - \frac{E_0}{2E_{\beta}} \right) \approx 0.5\% E_{\beta}$$
(2.19)

На рисунке 2.11 показан вклад поправки слабого магнетизма $1 + \delta_{\text{WM}}$. Из рисунка видно, что слабый магнетизм меняет форму одиночного спектра примерно на 2 - 2.5% при высоких значениях Q (при низких $Q \approx 1 - 2$ МэВ вклад будет порядка 1%).

Рисунок 2.11 — Вклад поправки слабого магнетизма к форме одиночного спектра, Q = 8 МэВ.

Таблица 1. Используемые поправки к одиночному бета-спектру

Поправка Δ	Физ. смысл	$\max 1 - \Delta , \%$	Источник
Функция Ферми $F(Z, E_{\beta})$	Учет кулоновского взаимодействия дочернего ядра с β -электроном	≈ 100	[35]
Конечный размер $L(Z, E_{\beta})$	Учет неточечности дочернего ядра	≈ 2	[35]
Конечный размер $C(Z, E_{\beta}, Q)$	Учет конечных длин волн лептонов	≈ 2.5	[35]
Экранирование $S(Z, E_{\beta})$	Учет экранирования заряда дочернего ядра электронами атома	≈ 2.5	[40]
Радиационная поправка $G_{\beta}(E_{\beta},Q)$		≈ 6	[41]
Радиационная поправка $H_{\nu}(E_{\nu},Q)$	учет испускания виртуальных/реальных фотонов при оета-распаде	≈ 1	[42]
Слабый магнетизм $1 + \delta_{\rm WM}$	Учет вклада дополнительного формфактора, кроме g_a и g_v	≈ 2.5	[44]

Рисунок 2.12 — Вклад поправок в форму спектров для Z=46 и $Q=9~{\rm M}{\rm 9B}$

2.2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ КОНВЕРСИИ КИ

Пусть имеется экспериментально измеренный кумулятивный бетаспектр $\rho_{\beta} = \left\{ \rho_{\beta}^{(i)} \pm \Delta \rho_{\beta}^{(i)} \right\}_{i=1}^{N}$, содержащий N точек. Выберем пробное число точек \tilde{s} , начиная с последнего значения: $S_{\tilde{s}}^{N} = \left\{ \rho_{\beta}^{(N-\tilde{s})}, \rho_{\beta}^{(N-\tilde{s}-1)}, ..., \rho_{\beta}^{(N)} \right\}$, и аппроксимируем их функцией $a\rho_{\beta}(T_{\beta}, Q)$ с такими параметрами a и Q, что значение функционала

$$R = R(a, Q) = \sum_{i=N-\tilde{s}}^{N} \left(\rho_{\beta}^{(i)} - a \,\rho_{\beta}(T^{(i)}, Q)\right)^2 \tag{2.20}$$

минимально. Из этого условия находятся значения $\{\tilde{a}_N, \tilde{Q}_N\}$, соответствующие срезу $S^N_{\tilde{s}}$, т.е.

$$\{\tilde{a}_N, \tilde{Q}_N\} = \operatorname{argmin}\left[R(a, Q)\right] . \tag{2.21}$$

После этого строится функция $\tilde{a}_N \rho_\beta(T_\beta, \tilde{Q}_N)$, которая до некоторого значения ρ_β^{N-s} целиком лежит в полосе погрешностей исходного кумулятивного бета-спектра. Значение

$$s = \min\left\{\tilde{s} : \left(\rho^{(N-\tilde{s})} - \tilde{a}_N \rho_\beta(T_\beta^{(N-\tilde{s})}, \tilde{Q}_N)\right) \ge \Delta \rho_\beta^{(N-\tilde{s})}\right\}$$
(2.22)

определяет истинное число точек *s* в первом срезе. Для набора $S_s^N = \left\{ \rho_{\beta}^{(N-s)}, \rho_{\beta}^{(N-s-1)}, ..., \rho_{\beta}^{(N)} \right\}$ описанная выше процедура аппроксимации повторяется, находятся истинные значения a_N и Q_N . Полученный подгоночный спектр вычитается из исходного кумулятивного:

$$\rho_{\beta}^{(i)} == \rho_{\beta}^{(i)} - a_N \,\rho_{\beta}(T_{\beta}^{(i)}, Q_N) \,, \quad i = 1, 2, ..., N \,, \tag{2.23}$$

где "==" означает операцию присваивания.

Алгоритм, описанный выше, итерационно повторяется до тех пор, пока весь экспериментальный спектр ρ_{β} не будет описан, в результате чего получается набор значений $\{a_i, Q_i\}_{i=1}^M$ (M — число срезов), с помощью

которого строится кумулятивный спектр антинейтрино, соответствующий исходному ρ_{β} :

$$\rho_{\nu}(E_{\nu}) = \sum_{i=1}^{M} a_i \, \rho_{\nu}(E_{\nu}, Q_i) \tag{2.24}$$

Фактически, при таком алгоритме конверсии по экспериментальным данным группы ILL достаточно от 10 до 15 одиночных синтетических спектров в зависимости от изотопа. Из-за относительно небольшого числа подгоночных переходов на конвертированном спектре антинейтрино проявляются пилообразные скачки, связанные с учетом функции Ферми. Устранение этих скачков в рамках процедуры конверсии КИ проводится в 2 этапа.

На первом этапе к исходному набору синтетических бета–спектров, описывающих кумулятивный спектр, добавляются дополнительные, с заведомо меньшими весами. Параметры дополнительных бета-спектров определяются в процессе описания кумулятивного бета-спектра целиком с использованием как первичного, фиксированного набора, так и дополнительного. Отметим, что существующие модели конверсии предпочитают равномерное распределение одиночных спектров по энергетическому диапазону (около 5 одиночных спектров описывают отрезок энергии шириной 250 кэВ), в то время как реализация КИ распределяет спектры неравномерно - учитывается, что в мягкую область энергий реальных кумулятивных спектров вносят вклад большее число одиночных бета-ветвей, чем в жесткую.

На втором этапе проводится усреднение полученного антинейтринного спектра по бинам с шириной h = 250 кэВ [31]. В работе [32] дополнительно регуляризовать решение путем аппроксимации спектра функцией

$$y(E) = \exp\left(\sum_{j=1}^{6} a_j E^{j-1}\right)$$
 (2.25)

Бета-спектр и спектр антинейтрино зависят от трёх основных параметров — нормировочного коэффициента a, энергии конечной точки E_0 и заряда дочернего ядра Z (зависимостью от массового числа A мы пренебрегаем, она не вносит никакого значимого вклада [19]). Первые два из них, как показано выше, определяются в процессе аппроксимации. Технически, заряд Z тоже можно варьировать, однако это увеличит число степеней свободы в предложенной процедуре, делая её ещё более "нефизичной". Другой вариант — взять некоторое фиксированное значение (к примеру, для 235 U положить Z = 92/2 + 1 = 47).

Данные варианты обсуждались в работе [31], в ней же проанализирован оптимальный вариант, который был использован при расчете спектров антинейтрино в эксперименте ILL [14, 15]. Предлагается ввести некоторый эффективный заряд $\langle Z \rangle$, который определяется с использованием ядерных баз данных как [31]:

$$\langle Z \rangle(E_0) = \frac{\sum_{Z,A} Y(Z,A) \sum_f BR_f(E_{0,f}) Z}{\sum_{Z,A} Y(Z,A) \sum_f BR_f(E_{0,f})}$$
(2.26)

где Y(Z, A) — кумулятивный выход деления. Традиционно эту зависимость принято представлять в виде полинома второй степени [14,15,19,31]:

$$\langle Z \rangle(E_0) = Z(E_0) = a_0 + a_1 E_0 + a_2 E_0^2$$
 (2.27)

Или же, в терминах энергии реакции Q:

$$Z(Q) = c_0 + c_1 Q + c_2 Q^2$$
(2.28)

Мы будем использовать наборы коэффициентов c_i для аппроксимации Z(Q), полученные в работе [19] для ²³⁵U, ²³⁹Pu и ²⁴¹Pu и представленные в таблице 1. Отметим, что в определении [19] Z является зарядом родительского ядра.

Таблица 2. Коэффициенты параметризации Z(Q) для выражения (2.28)

Изотоп	c_0	c_1	c_2
$^{235}\mathrm{U}$	$48.992^{+0}_{-0.164}$	$-0.399^{+0.161}_{-0}$	$-0.084^{+0}_{-0.044}$
²³⁹ Pu	$49.650^{+0}_{-0.214}$	$-0.447^{+0.036}_{-0}$	$-0.089^{+0}_{-0.016}$
241 Pu	$49.906^{+0}_{-0.178}$	$-0.510^{+0.160}_{-0}$	$-0.044^{+0}_{-0.052}$

2.3. АНАЛИЗ НЕОПРЕДЕЛЕННОСТЕЙ ПРОЦЕДУРЫ КОНВЕРСИИ

Очевидно, что точность метода конверсии по реконструкции реального спектра антинейтрино ограничена, а использованный алгоритм содержит ряд предположений, которые вносят неопределенность в процедуру конверсии.

Во-первых, как было отмечено выше, измеренные бета-спектры не учитывают вклад от долгоживущих продуктов деления, т.к. длительность облучения мишеней изотопов урана и плутония составляла одни сутки. Известно [11], что влияние бета-переходов с временем жизни более суток увеличивает выход бета-электронов на 2-3% в области энергий до 3 МэВ. Также существует различие в энергетическом спектре нейтронов в исследовательском реакторе при облучении мишеней и в активной зоне промышленного реактора, что дает вклад надтепловых нейтронов в деления изотопов урана и плутония [11, 12].

Во-вторых, процедура подгонки с помощью варьирования параметров виртуальных бета-переходов не может обеспечить воспроизведение тонкой структуры спектра антинейтрино, особенно в жесткой области, в которой реальный спектр формируется лишь несколькими продуктами деления, имеющих специфику в схемах распада. Невысокая точность измеренного бета-спектра в жесткой области также вносит определенный произвол в процедуру подгонки и позволяет рассчитывать спектры антинейтрино до энергий, не превышающих 8 МэВ.

Источниками погрешностей процедуры конверсии являются:

1) Экспериментальная статистическая погрешность исходных данных и погрешность их нормировки;

2) Неопределенности в зависимости эффективного заряда $\langle Z \rangle$ от граничной энергии Q;

3) Неопределенности в выражениях для различных поправок к бета-спектру (особенно в слабом магнетизме);

4) Погрешности параметров подгонки Q_i и k_i (и их трансляция с *i*-ой на i + 1 итерацию и т.д.);

29

5) Неопределенности в технических деталях реализации процедуры, таких как, например, вычитание одиночного спектра из кумулятивного;

6) Неопределенность в выборе сглаживающего окна при усреднении спектров антинейтрино на последнем этапе;

7) Погрешности округления, машинная точность и т.п.;

Подробный анализ вклада различных неопределенностей был проведен в работе Huber [19] — в частности, была проведена оценка ошибок, связанных с неопределенностями в зависимости $\langle Z \rangle (Q)$, влиянием слабого магнетизма и экспериментальными погрешностями в исходных данных группы ILL. Часть этого анализа воспроизведена в настоящей работе с использованием нового подхода, который будет описан ниже. Прежде всего отметим, что неопределенности 5-7 из представленного списка вносят наименьший вклад, который в конечном итоге полностью подавляется процедурой окончательной регуляризации решения - аппроксимации логарифма спектров полиномиальной функцией.

Для анализа неопределенностей конверсии предлагается следующий подход. Пусть в результате конверсии данных ILL ρ_{β} получены кумулятивные спектры бета-частиц $\rho_{\beta}^{(1)}(T_{\beta})$ и антинейтрино $\rho_{\nu}^{(1)}(E_{\nu})$ (смысл индекса (1) будет раскрыт ниже). Отметим, что по своему построению спектр $ho_{eta}^{(1)}(T_{eta})$ полностью совпадает с исходным ho_{eta} в пределах полосы погрешностей последнего. Добавим к конверсионному спектру $\rho_{\beta}^{(1)}(T_{\beta})$ случайную погрешность $\delta \rho_{\beta}^{(1)}(T_{\beta})$, подчиняющуюся тому же закону распределения и имеющую тот же масштаб, что погрешности экспериментальных данных ILL, после чего конвертируем уже возмущенный конверсионный спектр $\rho_{\beta}^{(1)}(T_{\beta}) + \delta \rho_{\beta}^{(1)}(T_{\beta})$ по алгоритму КИ. В результате получим вторичные конверсионные спектры бета-частиц $\delta \rho_{\beta}^{(2)}(T_{\beta})$ и антинейтрино $\delta \rho_{\nu}^{(2)}(E_{\nu})$. Описанную процедуру можно повторить необходимое число раз, возмущая и конвертируя кумулятивные бета-спектры в спектры антинейтрино, среднее значение которых в пределе стремится к истинному спектру, а среднеквадратичный разброс значений характеризует ошибку процедуры конверсии, вызванную статистической погрешностей исходных данных.

Отметим, что модели Huber для оценки погрешностей такого типа используется похожий подход, с разницей в том, что вместо конверсионного спектра $\rho_{\beta}^{(1)}(T_{\beta})$ использовался бета-спектр, рассчитанный методом *ab* *initio*. Основное же преимущество предложенного метода повторной конверсии заключается в возможности дополнительного анализа неопределенностей процедуры преобразования путем сравнения конверсионных спектров $\rho_{\nu}^{(1)}(E_{\nu})$ и $\rho_{\nu}^{(2)}(E_{\nu})$, которые могут быть получены с использованием различного набора поправок.

Полученный результат оценки неопределенностей процедуры конверсии согласуется с результатами Huber [19]. Рисунок ниже иллюстрирует отклонения спектров антинейтрино, получаемых в результате повторной конверсии, от их среднего значения (представлена выборка для 100 итераций). Среднеквадратичный разброс значений в каждом энергетическом бине характеризует статистическую погрешность спектра.

Рисунок 2.13 — Отклонения повторно конвертированных спектров антинейтрино от их среднего значения (представлена выборка для 100 итераций)

2.4. ДОКАЗАТЕЛЬСТВО УСТОЙЧИВОСТИ ОТНОШЕНИЙ ВЫХОДОВ ОБР

Для анализа устойчивости отношения выходов ОБР основных изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu была проведена конверсия спектров группы ILL со всевозможными комбинациями поправок к одиночному бета-спектру в модели КИ, для каждых из которых были рассчитаны соответствующие выходы ОБР.

Запись $\sigma(\Delta)$ означает, что данный выход ОБР был рассчитан по кумулятивному спектру реакторных антинейтрино, полученному конверсией данных ILL с учетом поправки Δ . Так, $\Delta = 1$ соответствует конверсии без поправок (отметим, что функция Ферми в этом смысле поправкой не является и учитывается всегда). Аналогично, $\Delta = A$ соответствует включению всех поправок модели КИ, а запись $A - \Delta$ — что учтены все поправки, за исключением Δ . Полученные результаты представлены в таблицах 3–5 для трех основных изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu.

Δ	σ(Δ), 10 ⁻⁴³ см²дел ⁻¹	$\frac{\sigma(A) - \sigma(\Delta)}{\sigma(A)}$	$\frac{\sigma(\Delta) - \sigma(1)}{\sigma(\Delta)}$	$\frac{\sigma(A) - \sigma(A - \Delta)}{\sigma(A)}$
1	6.38	3.33%	-	-
(L ₀ C)	6.62	-0.30 %	3.63 %	3.64 %
S	6.35	3.79 %	-0.47 %	-0.45 %
Rad	6.46	2.12 %	1.24 %	1.36 %
WM	6.32	4.24 %	-0.95 %	-1.06 %
$(L_0C)S$	6.59	0.15 %	3.19 %	3.18 %
(L ₀ C) Rad	6.71	-1.67 %	4.92 %	4.85 %
(L ₀ C) WM	6.55	0.76 %	2.60 %	2.58 %
S Rad	6.43	2.58 %	0.78 %	0.76 %
S WM	6.28	4.85 %	-1.59 %	-1.67%
Rad WM	6.39	3.18 %	0.16 %	0.15 %
(L ₀ C) S Rad	6.67	-1.06 %	4.35 %	4.24 %
(L _o C) S WM	6.51	1.36 %	2.00 %	2.12 %
(L₀C) Rad WM	6.63	-0.45 %	3.77 %	3.79 %
Rad S WM	6.36	3.64 %	-0.31%	-0.30 %
А	6.60	-	3.33%	-

Таблица 3. Выходы ОБР ²³⁵U для разных поправок

Δ	σ(Δ),	$\sigma(A) - \sigma(\Delta)$	$\sigma(\Delta) - \sigma(1)$	$\sigma(A) - \sigma(A - \Delta)$
	10 ⁻⁴³ см ² дел ⁻¹	$\sigma(A)$	$\sigma(\Delta)$	$\sigma(A)$
1	4.19	3.23%	-	-
(L ₀ C)	4.34	-0.23%	3.46%	3.70%
S	4.17	3.70%	-0.48%	-0.46%
Rad	4.24	2.10%	1.18%	1.39%
WM	4.15	4.16%	-0.96%	-0.92%
(L ₀ C) S	4.32	0.23%	3.00%	3.00%
(L _o C) Rad	4.41	-1.85%	4.99%	4.85%
(L ₀ C) WM	4.30	0.69%	2.56%	2.77%
S Rad	4.21	2.77%	0.48%	0.69%
S WM	4.12	4.85%	-1.70%	-1.85%
Rad WM	4.20	3.00%	0.24%	0.23%
(L ₀ C) S Rad	4.37	-0.92%	4.12%	4.16%
(L ₀ C) S WM	4.27	1.39%	1.87%	2.10%
(L ₀ C) Rad WM	4.35	-0.46%	3.68%	3.70%
Rad S WM	4.17	3.70%	-0.48%	-0.23%
А	4.33	-	3.23%	-

Таблица 4. Выходы ОБР ²³⁹Ри для разных поправок

Таблица 5. Выходы ОБР ²⁴¹Ри для разных поправок

Δ	σ(Δ),	$\sigma(A) - \sigma(\Delta)$	$\sigma(\Delta) - \sigma(1)$	$\sigma(A) - \sigma(A - \Delta)$
	10 ⁻⁴³ см ² дел ⁻¹	$\sigma(A)$	$\sigma(\Delta)$	$\sigma(A)$
1	5.82	3.16%	-	-
(L ₀ C)	6.04	-0.50%	3.64%	3.66%
S	5.78	3.83%	-0.70%	-0.67%
Rad	5.88	2.16%	1.02%	1.16%
WM	5.75	4.34%	-1.22%	-1.16%
(L ₀ C) S	6.00	0.17%	3.00%	3.16%
(L _o C) Rad	6.11	-1.67%	4.75%	4.83%
(L ₀ C) WM	5.97	0.67%	2.52%	2.66%
S Rad	5.85	2.66%	0.51%	0.67%
S WM	5.72	4.83%	-1.75%	-1.67%
Rad WM	5.82	3.16%	0%	0.17%
(L₀C) S Rad	6.08	-1.16%	4.28%	4.34%
(L ₀ C) S WM	5.94	1.16%	2.02%	2.16%
(L ₀ C) Rad WM	6.05	-0.67%	3.80%	3.83%
Rad S WM	5.79	3.66%	-0.52%	-0.50%
А	6.01	-	3.16%	-

Отметим следующие наблюдения. Введем в рассмотрение функционал

$$h(\Delta) = \frac{\sigma(\Delta) - \sigma(1)}{\sigma(\Delta)} = \frac{\sigma(A) - \sigma(A - \Delta)}{\sigma(A)}.$$
 (2.29)

Второе равенство в данном выражении выполняется с хорошей точностью, согласно расчетам, представленным в таблицах 3–5. Основными свойствами функционала $h(\Delta)$ является его линейность по поправкам, то выполнение равенства

$$h(\Delta_1 \Delta_2) = h(\Delta_1) + h(\Delta_2), \qquad (2.30)$$

и независимость от выбранного изотопа. Обращаем внимание, что оба представленных свойства выполняются с точностью долей процента. С этой же точностью выполняется следующая цепочка равенств:

$$\sigma(\Delta_1 \Delta_2) = \sigma(\Delta_1) \cdot [1 + h(\Delta_2)] = \sigma(\Delta_2) \cdot [1 + h(\Delta_1)] = \sigma(1) \cdot [1 + h(\Delta_1 \Delta_2)] = \sigma(1) \cdot [1 + h(\Delta_1 \Delta_2)] + h(\Delta_2)] \quad (2.31)$$

Отсюда немедленно следует устойчивость отношения выходов ОБР:

$$\frac{\sigma^X(\Delta_1\Delta_2)}{\sigma^Y(\Delta_1\Delta_2)} = \frac{\sigma^X(\Delta_1)}{\sigma^Y(\Delta_1)} \cdot \frac{1+h(\Delta_2)}{1+h(\Delta_2)} = \frac{\sigma^X(\Delta_2)}{\sigma^Y(\Delta_2)} \cdot \frac{1+h(\Delta_1)}{1+h(\Delta_1)} = \frac{\sigma^X(1)}{\sigma^Y(1)}, \quad (2.32)$$

Данный вывод подтвержден расчетами, представленными в таблице 6 — отличие от постоянной величины наблюдается на уровне долей процента, чем можно пренебречь по сравнению с погрешностью отношений выходов ОБР, составляющей 3–4 %.

Таким образом, отношение выходов ОБР зависит только от отношения исходных бета-спектров и является устойчивой величиной относительно процедуры преобразования.

	Таблица	6. BE	ыходы	ОБР,	рассчитан	ные	ПО	конвер	сионным	спек-
трам,	учитыван	ощим	различ	ные з	поправки,	для	осн	ОВНЫХ	ИЗОТОПОВ	235 U,
²³⁹ Pu	и ²⁴¹ Pu, и	ИХ ОТН	ошени	я. Сеч	ения прив	еденн	БВ	единица	10^{-43} cm	м ² дел ⁻¹

Δ	σ^{235}	σ^{239}	σ^{241}	$\sigma^{235}/\sigma^{239}$	$\sigma^{235} / \sigma^{241}$
1	6.38	4.19	5.82	1.522	1.096
(L _o C)	6.62	4.34	6.04	1.525	1.096
S	6.35	4.17	5.78	1.522	1.098
Rad	6.46	4.24	5.88	1.524	1.098
WM	6.32	4.15	5.75	1.522	1.099
(L _o C) S	6.59	4.32	6.00	1.525	1.098
(L ₀ C) Rad	6.71	4.41	6.11	1.522	1.098
(L _o C) WM	6.55	4.30	5.97	1.523	1.097
S Rad	6.43	4.21	5.85	1.527	1.099
S WM	6.28	4.12	5.72	1.524	1.097
Rad WM	6.39	4.20	5.82	1.521	1.098
(L ₀ C) S Rad	6.67	4.37	6.08	1.526	1.097
(L _o C) S WM	6.51	4.27	5.94	1.525	1.096
(L ₀ C) Rad WM	6.63	4.35	6.05	1.524	1.096
Rad S WM	6.36	4.17	5.79	1.525	1.098
А	6.60	4.33	6.01	1.524	1.098

3. КОНВЕРСИЯ КИ: РЕШЕНИЕ ПРОБЛЕМЫ RAA

Экспериментальные данные эксперимента ILL с мелким шагом (50 кэВ для ²³⁵U и 100 кэВ для ²³⁹Pu, ²⁴¹Pu) представлены в работе [?] (в дальнейшем мы будем обозначать их $\rho_{\beta, \text{ ILL}}^i$, где индекс *i* принимает значения 235, 239 и 241 соответственно). Помимо этого, по результатам эксперимента НИЦ КИ [?] были получены данные вида:

$$R = \frac{\rho_{\beta, \text{ KI}}^{235} / \rho_{\beta, \text{ ILL}}^{235}}{\rho_{\beta, \text{ KI}}^{239} / \rho_{\beta, \text{ ILL}}^{239}}, \qquad (3.1)$$

график которых представлен на рисунке 3.1. Отметим, что экспериментальные данные в [?] для ²³⁵U приведены в интервале [1.5; 9.6] МэВ и для ²³⁹Pu в [1.5; 8] МэВ. Экспериментальные данные НИЦ КИ лежат в интервале [1.5; 8] МэВ.

Рисунок 3.1 — Экспериментальные данные НИЦ КИ — отношение отношений кумулятивных спектров 235 U и 239 Pu (3.1)

График 3.1 иллюстрирует, что отношение $\rho_{\beta, \text{ KI}}^{235}/\rho_{\beta, \text{ KI}}^{239}$, в среднем, лежит ниже отношения $\rho_{\beta, \text{ ILL}}^{235}/\rho_{\beta, \text{ ILL}}^{239}$ на $\approx 5\%$.

Рассмотрим две предельные гипотезы:

1) Кривая спектра β -частиц ²³⁵U группы ILL ошибочно завышена на $\approx 5\%$;

2) Кривая спектра β -частиц ²³⁹Pu группы ILL ошибочно занижена на $\approx 5\%$;

Спектры $\rho_{\beta, \text{ KI}}$ определим в соответствиями с гипотезами как

$$\rho_{\beta, \text{ KI}}^{235} = \rho_{\beta, \text{ ILL}}^{235} \cdot R,
\rho_{\beta, \text{ KI}}^{239} = \rho_{\beta, \text{ ILL}}^{239} / R.$$
(3.2)

Для $\rho_{\beta, \text{ KI}}^{235}$, $\rho_{\beta, \text{ ILL}}^{239}$, $\rho_{\beta, \text{ KI}}^{239}$, $\rho_{\beta, \text{ ILL}}^{239}$ реализуем конверсию по изложенному в предыдущих параграфах алгоритму. Полученные результаты представлены на рисунках 3.2 - 3.3 (черные линии соответствуют сравнению нашей конверсии исходных данных ILL без учета спектральной поправки КИ и конверсии Huber [19]). Заметим, что различия моделей КИ и Huber в случае ²³⁵U составляют порядка $\pm 0.5\%$ (при энергиях 8 МэВ разница увеличивается до $\pm 2\%$, что связано с выбором начальной точки конверсии), а в случае ²³⁹Pu — до $\pm 4\%$. В среднем же модели друг с другом согласуются в пределах погрешностей процедуры преобразования.

Рисунок 3.2 — Отношения спектров $\rho_{\mathrm{KI}}^{235}/\rho_{\mathrm{ILL}}^{235}$, гипотеза 1

Рисунок 3.3 — Отношения спектров $\rho_{\rm ILL}^{239}/\rho_{\rm KI}^{239}$, гипотеза 2

Заметим, что процедура конверсии в среднем устойчива относительно изменения исходных спектров ILL на $\approx 5\%$ — спектры антинейтрино отличаются на эту же величину.

Расчет выходов ОБР для описанных моделей дает следующий результат:

$$\begin{aligned} \sigma_{\rm KI}^{235} &= (6.26 \pm 0.12) \cdot 10^{-43} \, {\rm cm}^2 {\rm gen}^{-1} \,, \\ \sigma_{\rm KI}^{239} &= (4.55 \pm 0.12) \cdot 10^{-43} \, {\rm cm}^2 {\rm gen}^{-1} \,, \end{aligned} \tag{3.3}$$

$$\sigma_{\text{KI-ILL}}^{235} = (6.60 \pm 0.14) \cdot 10^{-43} \,\text{cm}^2 \text{дел}^{-1},$$

$$\sigma_{\text{KI-ILL}}^{239} = (4.33 \pm 0.12) \cdot 10^{-43} \,\text{cm}^2 \text{дел}^{-1}.$$
 (3.4)

Отношения сечений с поправкой и без

$$\left(\frac{\sigma_{\mathrm{KI}}^{235}}{\sigma_{\mathrm{KI-ILL}}^{239}}\right) = \left(\frac{\sigma_{\mathrm{KI-ILL}}^{235}}{\sigma_{\mathrm{KI}}^{239}}\right) \approx 1.45 \pm 0.05 \tag{3.5}$$

являются постоянной величиной, не зависящей от выбора гипотезы, и отличаются от отношения сечений без учета спектральной поправки КИ на ту же величину $\langle R \rangle \approx 5\%$, на которую, в среднем, отличаются β -спектры. Данный результат согласуется с доказанной выше устойчивостью отноше-

ния выходов ОБР к процедуре конверсии и зависимостью последнего только от начальных данных по кумулятивным бета-спектрам.

В таблице 7 приведено итоговое сравнение измеренных [3,4] сечений и расчетных.

Таблица 7. Экспериментальные и расчетные значения взвешенных сечений в единицах 10^{-43} см² дел⁻¹.

	σ^{235}	σ^{239}	$\sigma^{235}/\sigma^{239}$
Daya Bay [3]	6.10 ± 0.15	4.32 ± 0.25	1.41 ± 0.09
RENO [4]	6.15 ± 0.19	4.18 ± 0.26	1.47 ± 0.10
Среднее	≈ 6.13	≈ 4.25	≈ 1.44
KI–ILL	6.60 ± 0.14	4.33 ± 0.11	1.53 ± 0.05
KI	6.26 ± 0.12	4.33 ± 0.11	1.45 ± 0.05

4. ЗАКЛЮЧЕНИЕ

В данной работе была предложена модель конверсии для расчета реакторных спектров антинейтрино, на основе которой было разработано программное обеспечение для реализации описанной процедуры. Созданное ПО было запатентовано в рамках внутренней НИР НИЦ КИ "Наука и практика нейтринных исследований на АЭС".

В работе впервые описан и реализован метод повторной конверсии, с использованием которого, в частности, был проведен анализ неопределенностей метода конверсии; показано, что процедура преобразования с хорошей точностью линейна по поправкам, доказана устойчивость отношения выходов ОБР $\sigma^{235}/\sigma^{239}$.

С использованием экспериментальных данных группы КИ и представленной в данной работе процедуры конверсии были пересчитаны спектры реакторных антинейтрино для изотопов ²³⁵U и ²³⁸U, описано решение проблемы реакторной антинейтринной аномалии.

Дальнейшая работа будет направлена на развитие методики удаленного мониторинга работы ядерного реактора по нейтринному излучению и на пересчет эффективных тепловых энергий основных изотопов с использованием полученных в данной работе кумулятивных спектров реакторных антинейтрино.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Pontecorvo B. Inverse β-decay // National Research Council of Canada, Chalk River (1946), Report PD-205
- [2] Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay / F. An [et al.]
 // Phys. Rev. Lett (2017), vol. 118, p. 251801, DOI:10.1103/PhysRevLett.118.251801
- [3] Extraction of the ²³⁵U and ²³⁹Pu Antineutrino Spectra at Daya Bay / F. An [et al.] // Phys. Rev. Lett (2019), vol. 123, p. 111801, DOI:10.1103/PhysRevLett.123.111801
- [4] Fuel-composition dependent reactor antineutrino yield at RENO / G. Bak [et al.] // Phys. Rev. Lett (2018), vol. 122, p. 232501, DOI:10.1103/PhysRevLett.122.232501
- [5] Accurate Measurement of the Electron Antineutrino Yield of ²³⁵U Fissions from the STEREO Experiment with 119 Days of Reactor-On Data / H. Almazan [et al.] // Phys. Rev. Lett. (2020), vol. 125, p. 201801, DOI:10.1103/PhysRevLett.125.201801
- [6] Neutrino Detectors as Tools for Nuclear Security / A. Betstein [et al.] // Rev. Mod. Phys. (2020), vol. 92, p. 011003, DOI:10.1103/RevModPhys.92.011003
- [7] Antineutrino reactor safeguards a case study / E. Christensen [et al.] // arXiv eprint (2013), arXiv:1312.1959 [physics.ins-det]
- [8] Hayes A., Vogel P. Reactor Neutrino Spectra // Annual Review of Nuclear and Particle Science (2016), vol. 66, pp. 219–244, DOI:10.1146/annurev-nucl-102115-044826
- [9] Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes / M. Estienne [et al.] // Phys. Rev. Lett. (2019), vol. 123, p. 022502, DOI:10.1103/PhysRevLett.123.022502
- [10] X. Mougeot Reliability of usual assumptions in the calculation of β and ν spectra // Phys. Rev. C (2015), vol. 91, p. 055504, DOI:10.1103/PhysRevC.91.055504
- [11] В. И. Копейкин, Л. А. Микаэлян, В. В. Синев Обратный бета-распад в неравновесном потоке антинейтрино ядерного реактора // ЯФ (2001), том 64, стр. 914
- [12] В. И. Копейкин, М. Д. Скорохватов Особенности протекания реакции обратного бета-распада на протоне в потоке антинейтрино ядерного реактора // ЯФ (2017), том 80, стр. 142–150

- [13] Absolute measurement of the beta spectrum from ²³⁵U fission as a basis for reactor antineutrino experiments / Schreckenbach K. [et al.] // Phys. Letters B (1981), vol. 99, pp. 251–256, DOI:10.1016/0370-2693(81)91120-5
- [14] Experimental beta-spectra from ²³⁹Pu and ²³⁵U thermal neutron fission products and their correlated antineutrino spectra / Von Feilitzsch F. [et al.] // Phys. Letters B (1982), vol. 118, pp.162–166, DOI:10.1016/0370-2693(82)90622-0
- [15] Determination of the antineutrino spectrum from ²³⁵ U thermal neutron fission products up to 9.5 MeV / Schreckenbach K. [et al.] // Phys. Letters B (1985), vol. 160, pp. 325–330, DOI:10.1016/0370-2693(85)91337-1
- [16] Antineutrino spectra from ²⁴¹Pu and ²³⁹Pu thermal neutron fission products / Hanh A.
 [et al.] // Phys. Letters B (1989), vol. 218, pp. 365–368, DOI:10.1016/0370-2693(89)91598-0
- [17] Re-publication of the data from the BILL magnetic spectrometer: The cumulative β-spectra of the fission products of ²³⁵ U, ²³⁹ Pu and ²⁴¹ Pu / Haag N. [et al.] // arXiv e-prints (2014), arXiv:1405.3501 [nucl-ex]
- [18] Improved predictions of reactor antineutrino spectra / Mueller T. A. [et al.] // Phys. Rev. C (2011), vol. 83, p. 054615, DOI:10.1103/PhysRevC.83.054615
- [19] Huber P. Determination of antineutrino spectra from nuclear reactors // Phys. Rev. C (2011), vol. 84, p. 024617, DOI:10.1103/PhysRevC.84.024617
- [20] Фаянс С.А. Радиационные поправки и эффекты отдачи в реакции $\tilde{\nu_e} + p \rightarrow n + e^+$ при низких энергиях // Ядерная физика (1985), том 42, вып. 4(10), с. 929–940
- [21] Strumia A., Vissani F. Precise quasielastic neutrino/nucleon cross section // Phys. Letters B (2003), vol. 564, No. 1–2, pp. 42-54, DOI:10.1016/S0370-2693(03)00616-6
- [22] The Reactor Antineutrino Anomaly / G. Mention [et al.] // Phys. Rev. D (2011), vol. 83, p. 073006, DOI:10.1103/PhysRevD.83.073006
- [23] C. Giunti, Y.F. Li, C.A. Ternes, Z. Xin Reactor antineutrino anomaly in light of recent flux model refinements // arXiv preprint (2021), arXiv:2110.06820 [hep-ph]
- [24] Копейкин В.И., Панин Ю.Н., Сабельников А.А. Измерение отношения кумулятивных спектров бета-частиц от продуктов деления ²³⁵ U и ²³⁹ Pu для решения задач физики реакторных антинейтрино // Ядерная физика (2021), том 84, №1, с. 3–11, DOI:10.31857/S0044002721010128
- [25] Kopeikin V., Skorokhvatov M., Titov O. Reevaluating reactor antineutrino spectra with new measurements of the ratio between ²³⁵U and ²³⁹Pu β spectra // Phys. Rev. D (2021), vol. 104, p. L071301, DOI:10.1103/PhysRevD.104.L071301

- [26] High precision analytical description of the allowed β spectrum shape / Hayen L. [et al.] // Rev. Mod. Phys. (2018), vol. 90, p. 015008, DOI:10.1103/RevModPhys.90.015008
- [27] Experimental Determination of the Antineutrino Spectrum of the Fission Products of ²³⁸U / Haag N. [et al.] // Phys. Rev. Lett. (2013), vol. 112, p. 122501, DOI:10.1103/PhysRevLett.112.122501
- [28] Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup
 / Hayes A. C. [et al.] // Phys. Rev. Lett. (2018), vol. 120, p. 022503,
 DOI:10.1103/PhysRevLett.120.022503
- [29] First-forbidden transitions in the reactor anomaly // Hayen L. [et al.] // Phys. Rev. C (2019), vol. 100, p. 054323, DOI:10.1103/PhysRevC.100.054323
- [30] Yu-Feng Li, Di Zhang New realization of the conversion calculation for reactor antineutrino fluxes // Phys. Rev. D (2019), vol. 100, p. 053005, DOI:10.1103/PhysRevD.100.053005
- [31] Vogel P. Conversion of electron spectrum associated with fission into the antineutrino spectrum // Phys. Rev. C (2007), vol. 76, p. 025504, DOI:10.1103/PhysRevC.76.025504
- [32] Huber P., Schwetz T. Precision spectroscopy with reactor antineutrinos // Phys. Rev. D (2004), vol. 70, p. 053011, DOI:10.1103/PhysRevD.70.053011
- [33] Боровой А.А., Копейкин В.И., Микаэлян Л.А., Толоконников С.В. О связи между спектрами реакторных ν_e и β−электронов // Ядерная физика (1982), т.36, вып.2(8), с.400–402
- [34] Behrens H., Janecke J. Numerical Tables for Beta-Decay and Electron Capture // Springer - 1969. - DOI:10.1007/b19939
- [35] Wilkinson D. H. Evaluation of Beta-Decay II. Finite mass and size effects // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (1990)
- [36] Elton L. R. B. A semi-empirical formula for the nuclear radius // Nuclear physics (1958), vol. 5, pp. 173–178, DOI:10.1016/0029-5582(58)90016-6
- [37] Vogel P. Analysis of the antineutrino capture on protons // Phys. Rev. D (1984), vol. 29, p. 1918, DOI:10.1103/PhysRevD.29.1918
- [38] Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly
 / Hayes A. C. [et al.] // Phys. Rev. Lett. (2014), vol. 112, p. 202501,
 DOI:10.1103/PhysRevLett.112.202501
- [39] High precision analytical description of the allowed β spectrum shape / Hayen L. [el al.] // Reviews of modern physics (2018), vol. 90, p. 015008, DOI:10.1103/RevModPhys.90.015008

- [40] Behrens H., Buhring W. Electron radial wave functions and nuclear beta-decay // Clarendon press, Oxford (1982)
- [41] Sirlin A. General Properties of the Electromagnetic Corrections to the Beta Decay of a Physical Nucleon // Phys. Rev (1967), vol. 164, p. 1767, DOI:10.1103/PhysRev.164.1767
- [42] Sirlin A. Radiative Correction to the $\bar{\nu}_e$ (ν_e) Spectrum in β -decay // Phys. Rev. D (2011), vol. 84, p. 014021, DOI:10.1103/PhysRevD.84.014021
- [43] Batkin I., Sundaresan M. Effect of radiative corrections on the solar neutrino spectrum // Phys. Rev. D. (1995), vol. 52, pp. 5362–5365, DOI:10.1103/PhysRevD.52.5362
- [44] Hayes A., Wang X. Weak magnetism correction to allowed β decay for reactor antineutrino spectra // Phys. Rev. C (2017), vol. 95, p. 064313, DOI: 10.1103/PhysRevC.95.064313
- [45] P.A. Zyla [et al.] The Review of Particle Physics // Progress of Theoretical and Experimental Physics (2020), vol. 2020, No. 8, DOI:10.1093/ptep/ptaa104

ПРИЛОЖЕНИЕ А

ВСПОМОГАТЕЛЬНЫЕ ДАННЫЕ

	b_1	b_2	b_3	b_4	b_5	b_6
a_{-1}	0.115	-1.8123	8.2498	-11.223	-14.854	32.086
a_0	-0.00062	0.007165	0.01841	-0.53736	1.2691	-1.5467
a_1	0.02482	-0.5975	4.84199	-15.3374	23.9774	-12.6534
a_2	-0.14038	3.64953	-38.8143	172.137	-346.708	288.787
a_3	0.008152	-1.15664	49.9663	-273.711	657.629	-603.703
a_4	1.2145	-23.9931	149.972	-471.299	662.191	-305.68
a_5	-1.5632	33.4192	-255.133	938.53	-1641.28	1095.36

Таблица А1. Коэффициенты параметризации поправки $L_0(Z, E)$ для электронов: воспроизведение таблицы 1 работы [35].

Таблица А2. Узлы сеточной функции $N(\tilde{Z})$ для параметризации поправки на экранирование: воспроизведение таблицы 4.7 работы [40].

\tilde{Z}	1	8	13	16	23	27	29	49	84	92
$N(\tilde{Z})$	1.000	1.420	1.484	1.497	1.52	1.544	1.561	1.637	1.838	1.907

ПРИЛОЖЕНИЕ В

КУМУЛЯТИВНЫЕ СПЕКТРЫ РЕАКТОРНЫХ АНТИНЕЙТРИНО ДЛЯ ²³⁵U И ²³⁸U

Таблица В1. Кумулятивные спектры антинейтрино изотопов ²³⁵U и ²³⁸U с учетом спектральной поправки НИЦ "КИ".

E_{ν}, MeV	ρ_{ν}^{235} , fission ⁻¹ MeV ⁻¹	$\delta^{235}, \%$	ρ_{ν}^{238} , fission ⁻¹ MeV ⁻¹	$\delta^{238}, \%$
2.00	1.28	< 1.0	1.58	≈ 3.5
2.25	1.10		1.40	
2.50	$8.55 \cdot 10^{-1}$		1.16	
2.75	$7.40 \cdot 10^{-1}$		1.05	
3.00	$6.08 \cdot 10^{-1}$		$8.95 \cdot 10^{-1}$	
3.25	$5.29 \cdot 10^{-1}$		$7.61 \cdot 10^{-1}$	3.1
3.50	$4.16\cdot 10^{-1}$		$6.05\cdot10^{-1}$	2.6
3.75	$3.44 \cdot 10^{-1}$	1.1	$5.12 \cdot 10^{-1}$	2.6
4.00	$2.73 \cdot 10^{-1}$	1.2	$4.12 \cdot 10^{-1}$	2.6
4.25	$2.26\cdot 10^{-1}$	1.4	$3.44 \cdot 10^{-1}$	2.8
4.50	$1.69 \cdot 10^{-1}$	1.7	$2.62 \cdot 10^{-1}$	2.9
4.75	$1.23\cdot 10^{-1}$	1.8	$1.93 \cdot 10^{-1}$	3.3
5.00	$9.98 \cdot 10^{-2}$	1.9	$1.54 \cdot 10^{-1}$	3.7
5.25	$8.00 \cdot 10^{-2}$	2.0	$1.24 \cdot 10^{-1}$	4.1
5.50	$6.27 \cdot 10^{-2}$	2.2	$1.00 \cdot 10^{-1}$	5.0
5.75	$5.16 \cdot 10^{-2}$	2.4	$7.83 \cdot 10^{-2}$	5.9
6.00	$3.63 \cdot 10^{-2}$	2.7	$5.24 \cdot 10^{-2}$	7.6
6.25	$2.49 \cdot 10^{-2}$	3.0	$3.45\cdot10^{-2}$	10.6
6.50	$2.05 \cdot 10^{-2}$	3.0	$2.94 \cdot 10^{-2}$	12.6
6.75	$1.69 \cdot 10^{-2}$	3.3	$2.88 \cdot 10^{-2}$	11.7
7.00	$8.70 \cdot 10^{-3}$	3.6	$1.60 \cdot 10^{-2}$	14.1
7.25	$6.03 \cdot 10^{-3}$	4.1	$9.58 \cdot 10^{-3}$	21.9
7.50	$4.63 \cdot 10^{-3}$	4.4	$7.12 \cdot 10^{-3}$	30
7.75	$2.96 \cdot 10^{-3}$	5.0	$4.93 \cdot 10^{-3}$	≈ 30
8.00	$1.59\cdot 10^{-3}$	7.0	$3.09 \cdot 10^{-3}$	≈ 30