W-Ai measurements Towards 2D MJ background

Daniil Ponomarenko

Ludovica Aperio Bella, Alexander Bachiu, Ruth Jacobs, Stefano Camarda

NRNU MEPhI, Radboud University, DESY, CERN, Carlton University

November 23, 2021

Report from Ruth: Measurements of Drell-Yan angular coefficients 26.03.2021

- Relaxed kinematic cuts on E_T^{miss} and m_T^W in our signal region
- For SR cut on track-based isolation (ptvarcone20/pt < 0.1) & calo-based isolation (topoetcone20/pT < 0.05)
- Defined strategy to work with *ptvarcone*20/*pt* isolation variable scan in MJ region:
 - Relax and scan track isolation & keep calo isolation
- Recoil track isolation correction is applied

Outline for today

- Overview of the 1D MJ background estimation procedure in W-Ai
- 1D control plots
- 2D MJ background estimation approach
- Problem with MJ template derived from signal region
- Summary table for MJ uncertainties
- In this presentation would mainly focus on electrons channel
- Results for muons channel are in the backup slides

MJ background in W-Ai analysis

Note for $W^- ightarrow e^- u$

- The EWK comtamination in the 1st isolation slice is 6.2%
- 5.2% comes from the signal
- for muons we have almost the same

- Calculate MJ normalization:
 - repeat MJ estimation for different anti-isolation slices
 - ★ fit linear function
 - extrapolate back to SR
- Calculate MJ template shape:
 - MJ distributions in iso-slices don't match SR shape
 - apply bin-by-bin linear shape extrapolation
 - ★ assign 100% uncertainty
- Use 4 discriminative variables:
 - p_T , m_T , E_T^{miss} and $|\Delta \phi (\ell MET)|$
- Use 8 slicing bins in *ptvarcone*20/*pt*:

▶ Binning(8, 0.1, 0.5)

- In the fit use fixed EWK background normalization.
- Isolation ptvarcone20/pt slices for $W^- \rightarrow e^- \nu$ for all 4 variables are on Slides 21, 22, 23 and 24.

November 23, 2021 4 / 38

Calculate MJ normalization in the signal region

Signal region
213593
774 (0.36%)
37474 (17.54%)
1109 (0.52%)
12492 (5.82%)
NaN
39542 (18.5%)

$W^- \rightarrow \mu^- \nu$	Signal region
Total Number of MJ bkg	118754
Luminosity and cross section	405 (0.34%)
Intersection point	11269 (9.49%)
Extrapolation target	15 (0.01%)
Choice of hists	3756 (3.16%)
Isolation correction	NaN
Correlated Uncertainty	11275 (9.49%)

- The error bars are **not** multiplied by $\sqrt{\chi^2/NDoF}$
- Take final MJ yield as mean at *ptvarcone*20/*pt* = 0.025
- Less MJ background contribution for muon channel (as expected)
- Dominant MJ yield uncertainty comes from intersection point
- For now we don't use u_T slicing as pTW analysis does:
 - To improve yields precision might also consider to use set of u_T cuts to take control over jets activity: [15, 20, 25, 30, 35, 40, None]

(4) (2) (4) (4) (4)

э

Calculate MJ template shape

- Calculate shape correction using isolation slices for final MJ templates
- Given the large statistical uncertainty and the linear approximation used, the shift $\Delta H[X]$ applied is assigned a 100% relative uncertainty

In assumption, extrapolation is linear:

$$H_{MJ}^{[0.A,0.B]}[X] = H_{Data}^{[0.A,0.B]}[X] - H_{MC}^{[0.A,0.B]}[X]$$

$$\Delta H[X] = \frac{1}{4} \{ (H_{MJ}^{0.1,0.15} - H_{MJ}^{0.15,0.2}) + (H_{MJ}^{0.2,0.25} - H_{MJ}^{0.25,0.3}) + (H_{MJ}^{0.3,0.35} - H_{MJ}^{0.35,0.4}) + (H_{MJ}^{0.4,0.45} - H_{MJ}^{0.45,0.5}) \}$$

$$H_{MJ}^{sig}[X] = H_{MJ}^{0.1,0.15}[X] + 2 \cdot \Delta H[X]$$

ToDo: old numbers

$W^- \rightarrow e^- \nu$	Signal region		
T-t-I Number of Milbler	010500		
Total Number of MJ bkg	213593		
Data Stat.	1546 (0.72%)		
MC Stat.	2120 (1%)		
Shape Correction	3236 (1.52%)		
Uncorrelated Uncertainty	4166 (1.95%)		
$W^- o \mu^- u$	Signal region		
Total Number of MJ bkg	118754		
Data Stat.	775 (0.63%)		
MC Chat	004 00 700/		

$W \rightarrow \mu \nu$	Signal region
Total Number of MJ bkg	118754
Data Stat.	775 (0.63%)
MC Stat.	924 (0.78%)
Shape Correction	1014 (0.85%)
Uncorrelated Uncertainty	1561 (1.31%)

Daniil Ponomarenko (NRNU MEPHI, RU NL)

50

cptvarcone20/p n 0.25 < ptvarcone20/b, < 0.3 & topoetcone20/ot < 0.0

m in 0.2 < ptvarcone20/p < 0.25 & topoetcone20/pt < 0.01 m in 0.15 < ptvarcone20/p < 0.2 & topoetcone20/pt < 0.01 m in 0.1 < ptvarcone20/p < 0.15 & topoetcone20/pt < 0.01

100

150

lep p_ [GeV]

MJ background: control plots in the Signal Region for $W^- ightarrow e^- u$

Not good Data/Bkg agreement for u_T and |Y| distributions. Problems with $\cos \theta_{CS}$ in SR.

- u_T region [50, 100] GeV seems has wrong correction? This also observed for muons (see slide 8).
- high |Y| region: non linear *iso*-extrapolation effects in MJ?

Daniil Ponomarenko (NRNU MEPhI, RU NL)

W-Ai measurements

November 23, 2021 7 / 38

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MJ background: control plots in the Signal Region for $W^- ightarrow \mu^- u$

Bearable Data/Bkg agreement except u_T distribution:

- u_T shows same issue for [50, 100] GeV region.
- Comparing to electrons: high rapidity region works better. No huge discrepancies for $\cos\theta_{CS}$ and ϕ_{CS} = 0

Towards MJ in 2D

э

イロト 不得 トイヨト イヨト

2D MJ estimation: general idea

- Same approach as for 1D (bin-by-bin extrapolation), but working with 2D histograms:
 - Calculate 2D shape via isolation extrapolation method in SR
 - Scale derived MJ template by MJ yield from SR (see Slide 5)
- If possible, use one MJ template from SR along all |Y| and u_T bins. Example of 2D MJ shape calculations for $\cos \theta_{CS}^{reco}$ vs. ϕ_{CS}^{reco} :

Note

Some bins for derived 2D templates are negative.

- Set them to 0.
- More on Slide 25

W-Ai analysis binning and MJ shape

Signal region binning

- u_T: [0., 8., 17., 27., 40., 55., 75., 95., 120., 160., 220., 600]
- |Y|: [0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 3.6]
- Have to provide MJ estimation for 18 bins in total

- Use MJ yield normalization from given bin in 1D distribution
- Use 2D MJ template (cos θ^{reco}_{CS} vs. φ^{reco}_{CS}) derived from SR for all u_T and |Y| bins:
 - as a temporary solution to see if MJ shape from SR would work for all bins.
 - in short it doesn't work for electrons (slides 12 and 15).

MJ agreement: $\cos \theta_{CS}^{reco}$ as function of u_T bins

- Use $\cos \theta_{CS}^{reco}$ MJ template from SR for all u_T bins
- MJ yield normalization is provided by MJ yield in given u_T bin
- In the MJ populated u_T bins (2,3 and 4) Data/Bkg prediction discrepancy ~ 20% at the cos θ_{CS}^{reco} tails

Daniil Ponomarenko (NRNU MEPhl, RU NL)

MJ agreement: ϕ_{CS}^{reco} as function of u_T bins

- Use ϕ_{CS}^{reco} MJ template from SR for all u_T bins
- MJ yield normalization is provided by MJ yield in given u_T bin
- In the MJ populated u_T bins (3 and 4) Data/Bkg prediction discrepancy ~ 15%

Daniil Ponomarenko (NRNU MEPhI, RU NL)

MJ agreement: ϕ_{CS}^{reco} as function of |Y| bins Binning variable:

- Use \$\phi^{reco}_{CS}\$ MJ template from SR for all \$|Y|\$ bins
- MJ yield normalization is provided by MJ yield in given |Y| bin

Note • ϕ_{CS}^{reco} shows some MJ normalization problems

MJ agreement: $\cos \theta_{CS}^{reco}$ as function of |Y| bins Binning variable:

- Use $\cos \theta_{CS}^{reco}$ MJ template from SR for all |Y| bins
- MJ yield normalization is provided by MJ yield in given |Y| bin

Note

- $\cos \theta_{CS}^{reco}$ MJ shape should be treated as function of |Y|
- We have enough statistics to split |Y| in 3 regions and derive MJ templates for each region individually

MJ from 3 independent |Y| bins: $\cos \theta_{CS}^{reco}$ as function of |Y| bins

MJ from 3 independent |Y| bins: $\cos \theta_{CS}^{reco}$ and ϕ_{CS}^{reco} as function of |Y| bins

Daniil Ponomarenko (NRNU MEPhI, RU NL)

W-Ai measurements

November 23, 2021 17 / 38

Impact of |Y| binning on sys. uncertainty for $W^- ightarrow e^- u$

ToDo: old numbers						
$W^- ightarrow e^- u$	Signal region	Central $ Y < 0.8$	Middle $0.8 < Y < 2.0$	Forward $ Y > 2.0$		
Total Number of MJ bkg	213593	66379	85483	68633		
Luminosity and cross section	774 (0.36%)	234 (0.35%)	332 (0.39%)	172 (0.25%)		
Intersection point	37474 (17.54%)	13077 (19.7%)	19137 (22.39%)	14634 (21.32%)		
Extrapolation target	1109 (0.52%)	457 (0.69%)	798 (0.93%)	1260 (1.84%)		
Choice of hists	12492 (5.85%)	4359 (6.57%)	6379 (7.46%)	4878 (7.11%)		
Isolation correction	N/A	N/A	N/A	N/A		
Correlated Uncertainty	39542 (18.5%)	13079 (19.7%)	20191 (23.6%)	15478 (22.5%)		
Data Stat.	1546 (0.72%)	770 (1.16%)	984 (1.15%)	1071 (1.56%)		
MC Stat.	2120 (1%)	1039 (1.57%)	1257 (1.47%)	1779 (2.59%)		
Shape Correction	3236 (1.52%)	1017 (1.53%)	1785 (2.09%)	1031 (1.5%)		
Uncorrelated Uncertainty	4166 (1.95%)	1645 (2.48%)	2394 (2.8%)	2318 (3.38%)		

• Preliminary MJ uncertainty estimation

- have to sync MJ unc. calculation with W precision analyses
- ► *TODO:* no sys. unc. for isolation correction included.

Conclusions

- Control 1D plots $(u_T \text{ and } |Y|)$ shows Data/Bkg disagreement:
 - For high u_T due to problems with u_T reweighing in electrons and muons
 - For high |Y| bins underestimate MJ background yield in electrons channel only
- For 2D MJ template some bins are negative. This happens for regions where MJ close to 0.
 - set all negative bins to 0
- MJ templates for $\cos \theta_{CS}^{reco}$ depends on Y and u_T :
 - Same behaviour for electron and muon channels
 - ► Calculating MJ cos θ^{reco}_{CS} individually for 3 |Y| bins doesn't solve an issue for electrons, but might be an option for muons
 - * Could be this is effect of Data/MC disagreement for electrons for ϕ_{CS} and $\cos \theta_{CS}$ in SR
 - ► Might consider building acceptance functions to calculate MJ templates for each u_T and |Y| bin using MJ 2D template from signal regions
- Preliminary 2D templates are available on /eos for electron and muons channels (3 Y bins):
 - ► Electrons /eos/home-d/dponomar/Storage/Science/Wai/results/v20210713ptrw_ruth/WS
 - Muons /eos/home-d/dponomar/Storage/Science/Wai/results/v20210906ptrw_ruth/WS
 - Summary for muon channel is in the backup slides
- (Old numbers) $W^-
 ightarrow e^-
 u$ in the SR: 213593 \pm 18.5% (corr) \pm 1.95% (uncorr)
- (Old numbers) $W^- \rightarrow \mu^- \nu$ in the SR: 118754 \pm 9.49% (corr) \pm 1.31% (uncorr) corr) corrections at the second secon

Backup

Daniil Ponomarenko (NRNU MEPhI, RU NL)

November 23, 2021 20 / 38

3

イロト 不得 トイヨト イヨト

Isolation ptvarcone20/pt slices for $W^- \rightarrow e^- \nu$: leading lepton p_T

Daniil Ponomarenko (NRNU MEPH, RU NL)

Isolation *ptvarcone*20/*pt* slices for $W^- \rightarrow e^- \nu$: $|\Delta \phi (\ell - MET)|$

Daniil Ponomarenko (NRNU MEPhl, RU NL)

Isolation ptvarcone20/pt slices for $W^- ightarrow e^- u$: E_T^{miss}

Data / Model

ents/0.5G

Data / Model

 $0.4 \rightarrow 0.45$

Daniil Ponomarenko (NRNU MEPhl, RU NL)

November 23, 2021 23 / 38

Isolation ptvarcone20/pt slices for $W^- ightarrow e^- u$: m_T^W

2D MJ estimation: extrapolation and projections on Y axis

- Some of the bins are negative.
- Set them to 0 with assumption it should not affect overall normalization too much.

э

Muons

Daniil Ponomarenko (NRNU MEPhI, RU NL)

November 23, 2021 26 / 38

3

イロト 不得 トイヨト イヨト

W-Ai analysis binning and MJ shape

Signal region binning

- u_T: [0., 8., 17., 27., 40., 55., 75., 95., 120., 160., 220., 600]
- |Y|: [0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 3.6]
- Have to provide MJ estimation for 18 bins in total

- Use MJ yield normalization from given bin in 1D distribution
- Use 2D MJ template ($\cos \theta_{CS}^{reco}$ vs. ϕ_{CS}^{reco}) derived from SR for all u_T and |Y| bins:
 - as a temporary solution to see if MJ shape from SR would work for all bins.
 - could work for muons(Slide 28).

MJ agreement: $\cos \theta_{CS}^{reco}$ as function of u_T bins

- Use $\cos \theta_{CS}^{reco}$ MJ template from SR for all u_T bins
- MJ yield normalization is provided by MJ yield in given u_T bin
- In the MJ populated u_T bins (3, 4 and 5) Data/Bkg prediction discrepancy ~ 12%.

Daniil Ponomarenko (NRNU MEPhI, RU NL)

November 23, 2021 28 / 38

э

Image: 1 million of the second sec

MJ agreement: ϕ_{CS}^{reco} as function of u_T bins

- Use ϕ_{CS}^{reco} MJ template from SR for all u_T bins
- MJ yield normalization is provided by MJ yield in given u_T bin
- In the MJ populated u_T bins (3 and 4) Data/Bkg prediction discrepancy ~ 15%

Daniil Ponomarenko (NRNU MEPhI, RU NL)

W-Ai measurements

э

N 4 E

< A

MJ agreement: ϕ_{CS}^{reco} as function of |Y| bins Binning variable:

. 10

- Use \$\phi_{CS}^{reco}\$ MJ template from SR for all \$|Y|\$ bins
- MJ yield normalization is provided by MJ yield in given |Y| bin

Note • For muons $\phi_{CS}^{\rm reco}$ overall good agreement

MJ agreement: $\cos \theta_{CS}^{reco}$ as function of |Y| bins Binning variable:

- Use $\cos \theta_{CS}^{reco}$ MJ template from SR for all |Y| bins
- MJ yield normalization is provided by MJ yield in given |Y| bin

Note

- $\cos \theta_{CS}^{reco}$ MJ shape should be treated as function of |Y|
- We can split |Y| in 3 regions and derive MJ templates for each of them individually

MJ from 3 independent |Y| bins: $\cos \theta_{CS}^{reco}$ as function of |Y| bins

W-Ai measurements

November 23, 2021 32 / 38

MJ from 3 independent |Y| bins: $\cos \theta_{CS}^{reco}$ and ϕ_{CS}^{reco} as function of |Y| bins

Daniil Ponomarenko (NRNU MEPhI, RU NL)

Impact of |Y| binning on sys. uncertainty for $W^- ightarrow \mu^- u$

ToDo: old numbers						
$W^- ightarrow \mu^- u$	Signal region	Central $ Y < 0.8$	Middle $0.8 < Y < 2.0$	Forward $ Y > 2.0$		
Total Number of MJ bkg	118754	43200	42069	33938		
Luminosity and cross section	406 (0.34%)	126 (0.29%)	175 (0.42%)	103 (0.3%)		
Intersection point	11269 (9.49%)	3581 (8.29%)	6078 (14.45%)	1744 (5.14%)		
Extrapolation target	15 (0.01%)	66 (0.15%)	82 (0.2%)	42 (0.12%)		
Choice of hists	3756 (3.16%)	1194 (2.76%)	2026 (4.82%)	582 (1.71%)		
Isolation correction	N/A	N/A	N/A	N/A		
Correlated Uncertainty	11275 (9.49%)	3777 (8.74%)	6081 (14.46%)	1748 (5.15%)		
Data Stat.	775 (0.63%)	438 (1.01%)	436 (1.04%)	424 (1.25%)		
MC Stat.	924 (0.78%)	599 (1.39%)	479 (1.14%)	563 (1.66%)		
Shape Correction	1014 (0.85%)	759 (1.76%)	419 (1.0%)	67 (0.2%)		
Uncorrelated Uncertainty	1561 (1.31%)	1061 (2.46%)	771 (1.83%)	708 (2.09%)		

• Preliminary MJ uncertainty estimation

- have to sync MJ unc. calculation with W precision analyses
- ► TODO: no sys. unc. for isolation correction included.

3

Isolation ptvarcone20/pt slices for $W^- \rightarrow \mu^- \nu$: leading lepton p_T

Isolation *ptvarcone*20/*pt* slices for $W^- \rightarrow \mu^- \nu$: $|\Delta \phi(\ell - MET)|$

Isolation ptvarcone20/pt slices for $W^- \rightarrow \mu^- \nu$: E_T^{miss}

Daniil Ponomarenko (NRNU MEPhI, RU NL)

November 23, 2021 37 / 38

Isolation *ptvarcone*20/*pt* slices for $W^- \rightarrow \mu^- \nu$: m_T^W

Daniil Ponomarenko (NRNU MEPhI, RU NL)

W-Ai measurements

November 23, 2021 38 / 38

2D MJ estimation: extrapolation and projections on Y axis for $W^- \rightarrow \mu^- \nu$

- Some of the bins are negative.
- Set them to 0 with assumption it should not affect overall normalization too much.

э