

ИЯФиТ

Кафедра физики элементарных частиц №40

Научная исследовательская работа студента на тему:

Поиск р(1700) в ультрапериферических столкновениях тяжелых ионов в условиях эксперимента ATLAS

Научный руководитель:

Тимошенко С. Л.

Студентка 4 курса:

Журкина А. О.

Введение

Одной из наиболее интенсивно изучаемых реакций UPC является реакция рождения векторных мезонов. Рождение векторных мезонов происходит через виртуальный фотон γ^* посредством процесса $\gamma^* p \rightarrow V p$. Интерес представляет распад векторного мезона ρ на два пиона. Распределение масс двух пионов показывает сложную структуру в диапазоне масс 1000-2000 МэВ. В области 1600 МэВ наблюдается резонансное состояние р мезона, которое по некоторым данным включает в себя два отдельных перекрывающихся резонанса $\rho(1450)$ и $\rho(1700)$.

Цель

Изучение ультрапериферических столкновений. Изучение реакции рождения векторного ρ мезона и его распада на два пиона. Рассмотрение распределения $\pi + \pi -$ масс в диапазоне 1400-1700 МэВ, для более детального исследования возбужденных состояний $\rho(1450)$ и $\rho(1700)$.

Проведенная работа

- Ознакомление со стратегией анализа данных;
- проведен анализ данных по поиску р мезона в двухканальном распаде;
- в качестве результатов работы предоставлены характерные распределения;
- проведено фитирование некоторых полученных распределений.

Рисунок 1 - Распределение по поперечному импульсу.

Рисунок 2 – Распределение по инвариантной массе.

Рисунок 3 – Распределение по псевдобыстроте.

Track Seeding

Первичный этап реконструкции трека начинается с формирования зерен треков (track seeds), состоящих из триплетов пространственных точек или хитов, которые совмещаются с точками вдоль треков заряженных частиц. Близко расположенные хиты могут приводить к возникновению ложных треков, которые необходимо исключать для получения корректных данных.

Рисунок 4 – распределение по псевдобыстроте без учета отбора ложных событий.

Рисунок 5 – распределение по псевдобыстроте с учетом исключения ложных треков.

Критерии отбора событий

- $\mathbf{Q} = \mathbf{0}$
- pt < 0,12
- $pt_i > 0,2$
- pt_i> 0,4
- $|\eta_i| < 2,4$
- $\alpha = 1 \frac{|\Delta \varphi|}{\pi} < 0,1$
- |d0i| < 1,5
- $|z0_i \sin \theta| < 1,5$

- $Q \neq 0$
- pt < 0,1
- $pt_i > 0,2$
- pt_i>0,4
- $\bullet \; |\eta_i| < 2,\!4$
- $\alpha = 1 \frac{|\Delta \varphi|}{\pi} < 0,1$
- |d0i| < 1,5
- $|z0_i \sin \theta| < 1,5$

Рисунок 6 - Распределение по инвариантной массе с учетом наложенных ограничений.

Рисунок 7 – Фон распределения по инвариантной массе с учетом наложенных ограничений.

Рисунок 8 - Распределение по быстроте с учетом наложенных ограничений.

Рисунок 9 – Фон распределения по быстроте с учетом наложенных ограничений.

Рисунок 10 - Распределение по разности азимутальных углов двух треков с учетом наложенных ограничений.

Рисунок 11 – Фон распределения по разности азимутальных углов двух треков с учетом наложенных ограничений.

Общие критерии отбора: $Q=0; \quad |\eta_i|<2,4; \quad \alpha<0,1; \quad |d0i|<1,5$

Рисунок 12 – Распределение по инвариантной массе при дополнительном условии pt_i> 0,2.

Рисунок 13 – Распределение по инвариантной массе при дополнительном условии pt_i> 0,4.

Рисунок 14 – Фитирование основного пика распределением Брейта-Вигнера.

Таблица 2 — Параметры фитирования области 770 при условии $pt_i > 0, 2$

Parameter	Value	Error
Const	0.731588	0.005491
Width	$0.194655~{\rm GeV}$	$0.000162~{\rm GeV}$
Mass ρ^0	$0.765034 { m ~GeV}$	$0.000079 {\rm GeV}$
А	206.326	0.774
В	-83.2202	0.3448

$$\frac{N_{1700}}{N_{770}} = \frac{867}{42092}$$

Рисунок 15 – Фитирование области исследуемого широкого резонанса.

Таблица 3 — Параметры фитирования области 1700 при услови
и $pt_i > 0, 2$

Parameter	Value	Error
Const	1528.48	149.04
Width	$0.154393~{\rm GeV}$	$0.018144~{\rm GeV}$
Mass ρ^0	$1.68922~{\rm GeV}$	$0.00727~{\rm GeV}$
$\mathbf{p0}$	3877250	2377590
p1	-4.87921	0.44015

14

Рисунок 16 – Фитирование области исследуемого широкого резонанса.

Таблица 4 — Паз	раметры фитировани	я области 1700	при условии pt	$i_i > 0, 4$
-----------------	--------------------	----------------	----------------	--------------

Parameter	Value	Error
Const	1613.51	45.42
Width	$0.177594 { m ~GeV}$	$0.010550~{\rm GeV}$
Mass ρ^0	$1.69240 { m ~GeV}$	$0.00523 { m GeV}$
p0	11962600	3413920
p1	-5.94987	0.22650

Заключение

Проделано:

- произведен анализ;
- получены характерные распределения и фон без учета ограничений;
- получены характерные распределения и фон с учетом ограничений;
- произведен отбор ложных треков;
- произведен анализ примечательных распределений методом фитирования;
- получено отношение $N(\rho'')/N(\rho)$;

Предстоит:

- произвести моделирование процесса с использованием Monte-Carlo генераторов таких, как Starlight или Pythia;
- включить в анализ ZDC для учета возбужденных состояний ядер;
- получить отношения поперечных сечений для ρ" и ρ;
- оценить отношение $N(2\pi)/N(4\pi)$;

BACK UP

Рисунок 17 – Распределение по соз *θ* в системе покоя для первого трека.

Рисунок 18 – Распределение по соз *θ* в системе покоя для второго трека.

BACK UP

Рисунок 19 - Распределение по прицельному параметру d0 относительно измеренной вершины столкновения для первого трека.

Рисунок 20 - Распределение по прицельному параметру d0 относительно измеренной вершины столкновения для второго трека.

BACK UP

d0

Рисунок 21 - Двумерное распределение прицельного параметра d0 первого трека от прицельного параметра d0 второго трека.