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Precision measurements of EW parameters

In the recent past, the global electroweak fit
was able to predict the masses of the top
guark and Higgs boson before their discovery

@ After the measurement of the Higgs mass, all -
the free parameters of the Standard Model
are known
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@ Relations between electroweak observables
can be predicted at 2-loop level

Precise measurements of the R
electroweak parameters allow A%

@ Stringent test of the self
consistency of the SM

@ Looking for hints of physics
beyond the SM

Stefano Camarda

mm Global EW fit

- Measurement

-2 lept
sin E)eﬂ (Tewt.)

-3 -2 1. 0 1 2
(O -0)/ o
to

indirect t

Eur. Phys. J. C78, 675 (2018)



https://doi.org/10.1140/epjc/s10052-018-6131-3

The electroweak gauge sector of the
Standard Model is constrained by three
precisely measured parameters

Electroweak sector

a = 1/137.035999139(31)
Gr = 11665787(6) x 10~ o GEV_2 & / |
mz = 91.1876(21) GeV

( miy

At tree level, other EW
parameters can be
expressed as
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Electroweak sector

The electroweak gauge sector of the
Standard Model is constrained by three
precisely measured parameters

= 1/137.035999139(31)
= 1.1663787(6) x 107° GeV ™~ L5
= 91.1876(21) GeV
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At tree level, other EW sin?g Oy = ( — T%K) K
parameters can be mgz
expressed as 3G Fmyy
FW = P
X 2\/§7T

Higher order corrections modify these
relations, and determine sensitivity to
other particle masses and couplings

Stefano Camarda 4



Relation between top, Higgs and W masses

Radiative corrections Ar to mW are
dominated by top-quark and Higgs loops

V2Grp (1 —miy/m3) (1{Ar) <

@ The relation between m;, my and mw

miy

provides a stringent test of the SM

Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
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@ The comparison between the measured my and
the predicted my is sensitive to new physics
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http://arXiv.org/abs/arXiv:1608.01509
https://pdg.lbl.gov/2021/html/authors_2021.html

Motivation for my

The global fit of the electroweak observables

is dominated by the measurement of m
mm Global EW fit

- Measurement Measurement SM Prediction (*)

|||||I|||||||I\||||||||\I|I|||I||||
M,  emmmm my  125.09 + 0.24 100.6 * 23.6
My| ——e—mmm m 173.1+ 0.6 176.1+ 2.2
m| . = mw  80.379+0.012  80.360 % 0.007

. . . . . . (*) arXiv:1710.05402
|II|IIH|IIII|IHIIIIII|1IIIIIII1|III
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(Oindirect ) O) / Gtot
The measurements of the Higgs and top- _ o _
quark masses are currently more precise = —pp» Improving precision will not
than their indirect determination from the increase sensitivity to new physics

global fit of the electroweak observables

Indirect determination of mw (£7 MeV) is more =

exp
precise than the experimental measurement Call for omw °> MeV

The W mass is nowadays the crucial measurement to
Improve the sensitivity of the global EW fits to new physics
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https://inspirehep.net/record/1630895

W-boson mass history

g ol = 0 ] @ 1983 CERN SPS — W discovery
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oE soasl . ATLAS
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w b ; i 1 e DO
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s N |
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- ; + i
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74 — : 3 —
- - 7 SppS
'Em?:'iiil““i””i””““i”iii”ilf“i_ ® UA1 mw = 80.376 £ 0.033 GeV
= . m  UA2
8 @ 2013 — Tevatron combined
Z
e mw = 80.387 + 0.016 GeV
‘f‘; @ 2017 — LHC (ATLAS)
1980 1985 1990 1995 2000 2005 2010 2015 2020 mw = 80.370 £ 0.019 GeV

year

@ Only four W-boson mass
measurements in the last 10 years

> Complex measurements
which require O(5-7) years
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W-boson mass today

Overview of m,, Measgrements (Matthias Schott)
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Before we can make any conclusive statement on
measurement/prediction, we should address
tensions between measurements
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Experimental measurements at colliders

The W-boson mass can be measured from: P

@ Kinematic properties of decay leptons in the SPS Tevatron
final state in pp - W - Iv processes (hadron "LHC ’
colliders)

~~

@ Direct reconstruction from the final state In

ee -~ WW - ggqa/qglv (e+e- colliders) LEP best

| | measurements
@ W-pair production at thresholds (e+e- colliders)

. L g 201 EP | -
\_,y Limited by statistics at LEP, < e e |

but most precise prospect ¢ +

at future colliders

10- £ H
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W mass at future colliders

@ The ultimate precision on my can be achieved at e*e’ 2 20 gp T
colliders through an energy scan of the WW = Ve -

1 © ]
production threshold

10

» Near threshold, the WW cross section is proportional /o W
to the non-relativistic W velocitv i/ |1

t
o(WW) o Bw -
arXiv:1306.6352 60 10 200
ILC Giga_z program Phys.Rept. 532 (2013) 119-244 ps (GeV)
° Energy scan 160 to 170 Gev 512 FCCee W-pair threshold
® OMw = 6-7 MeV $ [ [l 086153 ey, T 0OV
=10 []m,=80.385GeV, I',=1.085-3.085 GeV
=]
FCCee WW program )
@ SMw = 0.5 MeV
— dominated by statistical uncertainty 6l
4_
Dominant theory uncertainties .
@ |nitial state QED corrections
@ Parametrization of cross section near threshold e S EE .

Vs (GeV)

Physics at LHC and beyond Stefano Camarda 10


http://arxiv.org/abs/arXiv:1306.6352
http://arxiv.org/abs/arXiv:1302.3415

PDF uncertainties for the W mass

@ Sea quarks composition of protons is
charge symmetric

. same amount of gs and gs from sea
@ Valence quarks determines a charge
asymmetry in the proton:

What is the effect of this valence
asymmetry for Charged Current
Drell-Yan (W-boson) production?
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PDF uncertainties for the W mass

@ [n proton-antiproton collision PR
o §0_04 [ (a) w* rapidity
@ Asymmetry of the W rapidity 2 w0y S
S 3 ---- ¢ pseudorapidity
@ Same cross section for W+ and W- 009
5
7z,

=
]

@ Valence-dominated production

@ Very small ambiguity for the incoming parton: o,mf
guark from proton, antiquark from antiproton

) 0
proton antiproton == -2 - Tw o
Uy \ Uy /
/\ Negligible
aS,""""- """" P 4
12
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PDF uncertainties for the W mass

@ [n proton-proton collision
@ Different cross section for W+ and W-

@ Large ambiguity in the direction of the

Incoming quark

ol - BR(W'= I'v) [nb]

proton

W+
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PDF uncertainties for the W mass

@ What is the consequence of the ambiguity
In the direction of the incoming quark?

ow+(y) o< u(xt) - d(x) + d(x1) - u(x)
ow-(y) < d(x1) - t(x) + u(x1) - d(x)

@ The helicity is the projection of the spin on
the momentum axis

@ The W is a spin 1 particle, with 3 p055|ble
helicity states: A = +1,0,-1

A=+ W

@ Ambiguity in the average D e

helicity of the W
(polarisation)

PDF uncertainty — polarisation uncertainty
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W polarisation

1
(WREF)

4
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+ 1.5¢ .
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- II|III|III|III|III|III|III|II
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@ The 3 helicity states have very different
decay polar angles

@ The average polarisation heavily affects
the lepton kinematic
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W polarisation
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@ \We can artificially remove the ambiguity in
the W helicity by removing spin
correlations — Unpolarised W

@ Dramatic effect on PDF uncertainties of
lepton pr distribution
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W polarisation
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@ This effect accounts for 20 (30) MeV
uncertainty to the W mass extracted from
W+ (W-) lepton pr
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W mass at the LHC

@ Experimental mwis limiting the precision of the EW fit

@ Measuring is mw very challenging: slow progress in
uncertainty, few measurements, very long analysis

» Hierarchy in expected precision and trustworthiness of mw
measurements: pair production at threshold, proton-
antiproton, proton-proton
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ERC projects

ERC funded projects on the W mass measurement at the LHC
* ATLAS UMWA - completed

Ultimate measurement of the W boson mass with ATLAS, at the
LHC

* LHCb SPEAR - ongoing
Standard model Precision Electroweak tests at Acute Rapidities
» CMS ASYMOW -, starting

Power to the LHC data: an ASYmptotically MOdel-independent
measurement of the W boson mass
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https://cordis.europa.eu/project/id/280126/
https://cordis.europa.eu/project/id/865469
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