Министерство науки и высшего образования Российской Федерации - Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ) Институт ядерной физики и технологий Кафедра физики элементарных частиц (№40)

УДК 539.1.05, 524.1-52

ОТЧЁТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ЧИСЛЕННЫЙ РАСЧЁТ РАСПРОСТРАНЕНИЯ АНТИЯДЕР В МЕЖЗВЁЗДНОМ ПРОСТРАНСТВЕ

Научный руководитель профессор, д.ф.-м.н. _____ М. Ю. Хлопов Научный консультант к.ф.-м.н., доцент _____ А. Г. Майоров

Студент гр. Б18-102

_____А. В. Кравцова

Москва 2022

СОДЕРЖАНИЕ

1	Введение	3
2	Шаровые скопления в гало Галактики	5
3	Распространение частиц в межзвёздном пространстве	7
4	Расчёт траекторий заряженных частиц в электромагнитных полях 4.1 Функция распределения межзвёздного вещества	10 11
5	Постановка задачи	16
6	Результаты	17
7	Заключение	18

1. ВВЕДЕНИЕ

Ядро $\overline{He^4}$, состоящее из двух \overline{p} и двух \overline{n} (барионное число B = -4), не наблюдалось до 2011 года. Ядра антиматерии с B < -1 наблюдались ранее только как редкие продукты взаимодействий в ускорителях частиц. Впервые экспериментально антигелий был обнаружен The STAR Collaboration [1] всего 18 ядер $\overline{He^4}$ в 10⁹ зарегистрированных столкновениях Au + Au при энергиях центра масс 200 ГэВ и 62 ГэВ на нуклон-нуклонную пару.

Экспериментальное обнаружение антиядер способствовало развитию теоретических моделей, предполагающих существование антиматерии во Вселенной и, в частности, в нашей Галактике [2]. Согласно ним, антиматерию принято классифицировать на три группы:

- 1. Первичное антивещество. В статье [3] рассмотрены различные сценарии бариосинтеза с точки зрения возможности создания космологически интересного количества антивещества. Антивещество можно создавать во многих моделях, и в некоторых из них может быть получен не только антигелий, но и более тяжелые антиэлементы; будущие наблюдения последних будут иметь решающее значение для открытия или установления новых верхних пределов существования антивещества. Первичное антивещество могло зародиться в ранней Вселенной вследствие неоднородного бариосинтеза [4], эволюционировать в доменах антивещества и сейчас может существовать в виде макроскопических объектов антивещества [5], таких как шаровые скопления антизвёзд.
- 2. Вторичное антивещество. Оно образуется в результате столкновения высокоэнергетичной ядерной составляющей космических лучей с межзвездным газом или с остатком оболочки сверхновой [6].
- 3. Антивещество от экзотических источников испарение первичных чёрных дыр или распад/аннигиляция гипотетических ч-ц скрытой массы[7].

Существование макроскопических областей с избытком антибарионов в нашей Вселенной — возможное следствие практически всех моделей бариосинтеза. Согласно [8] существует возможность существования шарового скопления антизвезд в нашей Галактике, что может быть проверено с помощью эксперимента AMS [9]. Барионная асимметрия Вселенной обычно основывается на утверждении, что вокруг нас не существует макроскопического количества антиматерии в масштабах местного суперкластера галактик. Это утверждение поддерживается отрицательными результатами прямых поисков антиматерии в окрестностях Солнечной системы и серьезным ограничением на аннигиляцию вещества и антивещества. Антизвезда сможет образоваться только в окружении антиматерии масштаба по крайней мере шарового скопления, иначе окружающее барионное вещество проаннигилирует с антивеществом звезды. Больший размер доменов ограничен наблюдаемыми потоками гамма-излучения.

Таким образом, первичное антивещество сегодня могло бы существовать в гало Галактики в виде доменов антиматерии, приняв форму шаровых скоплений антизвезд. В диске Галактики это было бы невозможно вследствие сильной аннигиляции антивещества и газа материи (характерная скорость аннигиляции ~ 10^{-12} cm³/s [10]).

2. ШАРОВЫЕ СКОПЛЕНИЯ В ГАЛО ГАЛАКТИКИ

Шаровое звёздное скопление – большое и плотное сферически-симметричное скопление звёзд, вращающихся вокруг галактического центра [11]. Гравитация придаёт таким скоплениям сферическую форму и относительно высокую плотность звезд.

Рисунок 2.1 — Шаровые скопления звёзд в гало Галактики

Шаровые скопления (ШС) вращаются в расширенных звёздных гало, окружающих большинство спиральных галактик (рис. 2.1), и содержат одни

из самых старых звезд в галактике. В ШС больше звёзд, чем в менее плотных открытых скоплениях, обнаруженных в галактическом диске, причём у звёзд в ШС низкая доля элементов, отличных от водорода и гелия, по сравнению с, например, Солнцем. В настоящее время в Млечном Пути известно около 150 звёздных скоплений этой категории [12], ни одно из которых не показывает активного звездообразования. Они свободны от газа и пыли, и предполагается, что весь газ и пыль давно были либо превращены в звёзды, либо были выброшены из скопления во время первоначального взрыва звездообразования. Это согласуется с мнением о том, что ШС являются древнейшими объектами в Галактике и были одними из первых сформировавшихся скоплений звёзд.

Согласно [8], объекты, состоящие из первичного антивещества, могут присутствовать в Галактике в виде шаровых скоплений звёзд из антиматерии (возможный механизм образования антизвёзд описан в [13]). На основе предполагаемого сходства их свойств со свойствами шаровых скоплений из вещества рассматриваются возможности проверки гипотезы шарового скопления антиматерии в поисках антигелиевой составляющей космических лучей. Наш подход направлен на уточнение предсказаний этой гипотезы с учетом реалистичного описания образования и распространения космических антигелиевых потоков в Галактике.

3. РАСПРОСТРАНЕНИЕ ЧАСТИЦ В МЕЖЗВЁЗДНОМ ПРОСТРАНСТВЕ

Одним из важнейших вопросов космологии является объяснение наблюдаемой барионной асимметрии, т.е. практически полного отсутствия антивещества в видимой части Вселенной. Реальную величину асимметрии можно определить измерениями потоков антиядер с $|Z| \ge 2$ в первичных космических лучах вблизи Земли. В работе [14] произведён поиск антигелия по данным экспериментов РАМЕLA 2006-2009 гг. [15] в диапазоне от 0.6 до 600 ГВ (событий с зарядом -2 не обнаружено). В статье также приводится верхний интегральный предел отношения потоков $\overline{He}/He = 4.7 \cdot 10^{-7}$ (см. рис. 3.1).

Рисунок 3.1 — Верхний предел отношения \overline{He}/He (при значении доверительного интервала 95%) в сравнении с другими экспериментами

В настоящее же время на Международной космической станции запущен эксперимент AMS-02 [16] по изучению характеристик космических лучей. Одна из его задач – поиск антиядер тяжелее антипротона, включая антигелий. Его регистрация указала бы на существование дополнительного источника первичного антивещества, поскольку вероятность рождения вторичного антигелия = $10^{-17} - 10^{-12}$ (см. рис. 3.2), а это намного ниже чувствительности AMS-02 (~ 10^{-9} [18]). Одним из источников может быть шаровое скопление антизвезд в гало нашей Галактики.

Рисунок 3.2 — Спектр космических лучей \overline{p} (зеленый), \overline{d} (синий), $\overline{{}^{3}He}$ (оранжевый) и $\overline{{}^{4}He}$ (красный), предсказанный на основе модели аннигиляционной темной материи, которая может производить \overline{p} и γ -лучевые избытки [17]

Наиболее вероятным источником антиядер в галактических космических лучах (ГКЛ) считаются сверхновые антизвёзды. Взрывы сверхновых являются результатом эволюции звезд, сопровождающейся выделением высокой энергии 10⁵¹ эрг. Вещество от взорвавшейся антизвезды распространяется с большой скоростью. Частицы, ускоряющиеся на оболочке сверхновой, могут приобретать энергию 10¹⁵ эВ. По аналогии с тем фактом, что звёзды являются источником частиц в космических лучах, антизвезды должны быть основным источником антиядер в космических лучах [19]. В качестве прототипа скопления антизвёзд и источника $\overline{He^4}$ в галактических космических лучах рассматривается один из ближайших кластеров - М4 по каталогу Мессье (NGC 6121 в новом общем каталоге (NGC)) [20].

После рождения и ускорения в источнике, частицы космических лучей попадают в межзвездную среду, где меняют свою первоначальную траекторию, «запутываясь» в магнитных полях Галактики, и, дойдя до края, могут её покинуть. Распространение космических лучей в современном представлении носит диффузионный характер. Время удержания ГКЛ до выхода за границы Галактики обратно пропорционально коэффициенту диффузии, который растёт с увеличением энергии, то есть время удержания уменьшается с ростом энергии. Для частиц с энергией 1-2 ГэВ оно составляет $4 \cdot 10^7$ лет. За это время они успевают заполнить гало Галактики и, хотя вещество в Галактике в основном очень разрежено, успевают пройти толщу вещества около $10 \, \Gamma/cm^2$. Для частиц больших энергий пройденный путь резко уменьшается и, например, при энергии 10 ТэВ составляет $0.1 - 0.4 \, \Gamma/cm^2$, а время жизни $4 \cdot 10^6$ лет [21].

4. РАСЧЁТ ТРАЕКТОРИЙ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЭЛЕКТРОМАГНИТНЫХ ПОЛЯХ

В настоящее время предпринимаются попытки численно определить потоки античастиц в ГКЛ. Для решения этой задачи требуется знание структуры и размеров Галактики, расположения и мощности источников, местоположения Солнечной системы и свойств межзвездной среды. Распространение КЛ в Галактике серьезным образом определяется структурой магнитных полей. Силовые линии регулярного поля лежат в галактической плоскости и приблизительно идут вдоль спиральных рукавов. Магнитное поле существует также и в гало, но его структура точно не известна.

Пакет программ [Голубков В.С. и др.] для расчёта траекторий заряженных частиц в электромагнитных полях, включая его адаптацию для использования при трассировке частиц в магнитном поле Галактики, позволяет использовать реализованный и адаптированный метод для расчёта траекторий галактических и внегалактических космических лучей в Галактике, включая область гало. Для удобства использования реализованного метода создан программный пакет с возможностью гибкой настройки различных параметров частиц, магнитного поля, а также предусмотрена возможность задания среды, с которой возможно взаимодействие космических лучей (рис. 4.1). На вход GetTrajectoryInEMField принимает некоторые начальные условия: начальные координаты, тип и импульс частиц, временной шаг, после чего производит трассировку частиц в заданной среде и заданном магнитном поле. В работе [22] описана используемая функция GetMWBfield, которая задаёт топологию магнитного поля Галактики. С помощью этой функции моделируются траектории частиц с учётом влияния магнитного поля и оценивается доля частиц от первоначального потока, способная проникнуть в диск Галактики.

Рисунок 4.1 — Схема работы пакета программ по моделированию траекторий заряженных частиц

4.1. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ МЕЖЗВЁЗДНОГО ВЕЩЕСТВА

В статье [23] описывается код распространения GALPROP для расчета межзвездного распространения КЛ. Считается, что высокоэнергетические столкновения ядер КЛ с межзвездным газом являются механизмами производства большинства антипротонов. Однако точный расчет вторичного потока антипротонов создает "фон"для поиска экзотических сигналов от аннигиляции суперсимметричных частиц и испарения первичных черных дыр. В работе [23] прогнозируются потоки протонов и антипротонов вблизи Земли с помощью стационарной дрейфовой модели распространения в гелиосфере. Код GALPROP позволяет задавать источники частиц определенной мощности в различных частях Галактики. Алгоритм работы кода заключается в численном решении диффузионного уравнения с учетом детального описания распределений межзвездного газа и галактического магнитного поля. Используемый в нашей работе подход отличается от работы пакета программ GALPROP, и вместо решения уравнения переноса выполняется трассировка отдельных частиц в межзвёздном пространстве.

Доля различных компонент космических лучей, образованных и ускоренных на ударных волнах после вспышек сверхновых, при распространении в межзвездной среде меняется в результате ядерных реакций с межзвездным газом. Кроме того, рождаются вторичные частицы или античастицы, первоначально отсутствующие в источниках, например, позитроны, антипротоны, антидейтроны или антигелий. Чтобы учитывать такое влияние среды на движение частиц в Галактике, в вышеупомянутом программном пакете необходимо использовать функцию распределения плотности вещества. Для её построения была взята аналитическая модель распределения межзвёздного вещества в Галактике [23]. Распределения этой модели можно увидеть на рис. 4.2. Входными параметрами функциональной программы являются координаты в Галактике, а выходными - суммарная концентрация ионизованного, атомарного и молекулярного водорода в декартовой системе координат.

Распределения различных компонент газа, полученные с помощью составленной функции для плоскости z = 0.1 изображены на рис. 4.3 – 4.5.

На основе полученных графиков можно сделать вывод, что составленная программа работает верно, так как распределение концентрации совпадает с данными [23]. Таким образом, функциональная программа эффективна при её использовании для моделирования траекторий частиц с учётом влияния межзвёздной среды.

Рисунок 4.2 — Концентрации атомов молекулярного водорода H_2 (2 × n_{H_2} , сплошные линии), атомарного H_I (пунктир) и ионизованного H_{II} (точечные линии) газа в Галактике. Линии показаны для расстояний z = 0, 0.1, 0.2 кпк от Галактической плоскости (с увеличением z концентрация уменьшается). На расстоянии z = 0.2 кпк концентрация молекулярного водорода очень мала и поэтому не показана. Здесь R = 0 – ценр Галактики.

Рисунок 4.3 — Концентрация атомов атомарного водорода

Рисунок 4.4 — Концентрация атомов ионизованного водорода

Рисунок 4.5 — Концентрация атомов молекулярного водорода (красный); суммарная концентрация межзвёздного газа (синий)

5. ПОСТАНОВКА ЗАДАЧИ

В программном пакете для моделирования шарового скопления используется GeneranorCR (рис. 4.1) - функция источника космических лучей, генерирующая изотропный поток частиц из заданной точки Галактики. Но нас интересуют не все генерируемые частицы, а только те, что долетят до диска Галактики или провзаимодействуют с межзвёздным веществом на пути к диску (рис. 5.1) (какие-то частицы отразятся от диска вследствие влияния магнитного поля, а какие-то изначально полетят в противоположную сторону). Для эффективного использования пакета программ по построению траекторий заряженных частиц, необходимо сократить выборку - знать приемлемый диапазон значений временного и пространственного шагов при заданном количестве запускаемых частиц, так как, с одной стороны, имеется физическое ограничение, с другой, - ограничение, связанное с временем работы компьютера. Таким образом, необходимо было создать базу данных, к которой можно обращаться при запуске заданного количества частиц.

Рисунок 5.1 — Варианты траекторий частиц из шарового скопления

6. РЕЗУЛЬТАТЫ

В рамках научно-исследовательской работы была проведена трассировка антиядер гелия от скопления M4, являющегося прототипом кластера антизвёзд, к плоскости галактического диска. Была создана соответствующая база данных с приемлемыми диапазонами значений временного и пространственного шагов при различных количествах частиц. В дальнейшем планируется использовать полученный результат для трассировки частиц в программе с усовершенствованной моделью магнитнго поля, учитывающего неоднородности, а после и для интерпретации экспериментальных данных о потоках антиядер, полученных приборами PAMELA и AMS-02 на околоземной орбите.

7. ЗАКЛЮЧЕНИЕ

Используя полученные данные и произведя трассировку частиц с обновлёнными функциями, в скором времени мы сможем узнать, какая доля антиядер, вылетающих из шаровых скоплений антизвёзд, достигает орбиты Солнечной системы. Полученные данные будут использованы для интерпретации результатов экспериментальных поисков антиядер в космических лучах и изучения механизма возникновения барионной асимметрии Вселенной. Предварительные указания на возможное обнаружение антигелиевых событий в эксперименте AMS-02, которые нельзя объяснить как вторичные события из астрофизических источников, если они будут подтверждены, станут серьёзным доказательством существования форм первичного антивещества в нашей Галактике. Это будет способствовать физике, выходящей за рамки стандартной модели, которая может поддерживать создание и выживание доменов антивещества в барионн-асимметричной Вселенной.

ЛИТЕРАТУРА

- The STAR Collaboration: Observation of the antimatter helium-4 nucleus, Nature 473, 353-356 (2011).
- [2] L. Boyle, K. Finn and N. Turok: CPT-Symmetric Universe, Phys. Rev. Lett. 121(25), 251301 (2018).
- [3] A.D. Dolgov: Matter and antimatter in the universe, Nucl. Phys. Proc. Suppl. 113, 40 (2002).
- [4] M.Y. Khlopov: Fundamentals of Cosmoparticle Physics CISP-Springer, Cambridge, UK (2012).
- [5] V.M. Chechetkin, M.Yu. Khlopov and M.G. Sapozhnikov: Antiproton interactions with light elements as a test of GUT cosmologies., Rivista Nuovo Cimento, 5, 1-80 (1982).
- [6] N. Tomassetti, A. Oliva: Secondary antinuclei from supernova remnants and background for dark matter searches, 35th International Cosmic Ray Conference - ICRC2017 301, 271 (2017).
- [7] F.W. Stecker, A.J. Tylka: The cosmic-ray antiproton spectrum from dark matter annihilation and its astrophysical implications: a new look, Astrophysical Journal 336, L51 (1989), doi: 10.1086/185359.
- [8] M.Yu. Khlopov: An antimatter globular cluster in our Galaxy a probe for the origin of the matter, Gravitation and Cosmology, 4, 69-72 (1998).
- [9] AMS Collaboration, Alcaraz, J. et. al.: Search for Antihelium in Cosmic Rays, Phys. Lett. 287, B461 (1999).
- [10] Khlopov M. Y. et al.: Evolution and observational signature of diffused antiworld, Astroparticle Physics 12(4), 367-372 (2000)

- [11] Ashman, Keith M., and Stephen E. Zepf.: *Globular cluster systems* (2008).
- [12] http://gclusters.altervista.org
- [13] Dolgov A. D.: Antistars in the Galaxy (2022), arXiv:2201.04529.
- [14] Mayorov, A.G., Galper, A.M., Adriani, O. et al. Upper limit on the antihelium flux in primary cosmic rays. Jetp Lett. 93, 628 (2011).
- [15] M. Casolino, P. Picozza, F. Altamura et al.: Launch of the space experiment PAMELA, Advances in Space Research 42 (3), 455 (2008).
- [16] Lübelsmeyer K. et al.: Upgrade of the Alpha Magnetic Spectrometer (AMS-02) for long term operation on the International Space Station (ISS), Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 654 (1), 639-648, (2011).
- [17] Ilias Cholis, Tim Linden: Anti-Deuterons and Anti-Helium Nuclei from Annihilating Dark Matter, Phys. Rev. D 102, 103019 (2020).
- [18] http://ams.cern.ch/
- [19] Charlton M., Eriksson S., Shore G. M.: Testing fundamental physics in antihydrogen experiments (2020), arXiv:2002.09348.
- [20] Douglas C. Heggie and Mirek Giersz: Modelling individual globular clusters (2007), arXiv:0711.2620.
- [21] A.W. Strong, I.V. Moskalenko: Propagation of cosmic-ray nucleons in the Galaxy, The Astrophysical Journal 509, 212-228 (1998).
- [22] Kirichenko A. O., Kravtsova A. V., Khlopov M. Y., Mayorov A. G.: Researching of magnetic cutoff for local sources of charged particles in the halo of the Galaxy (2021), arXiv:2112.00361.

[23] A.W. Strong, I.V. Moskalenko: Secondary antiprotons and propagation of cosmic rays in the galaxy and heliosphere, The Astrophysical Journal 564, 280-296 (2001).