Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ИЗМЕРЕНИЕ СВЕТОВЫХОДА СЦИНТИЛЛЯТОРА GAGG C ПОМОЩЬЮ SIPM

Научный руководитель ассистент

_____ Ф. А. Дубинин

Студент

_____ А. П. Зверев

Москва2022

Содержание

Введение	3
Методика измерений и обработки результатов	4
Описание установки	5
Измерение одноэлектронного спектра	5
Определение коэффициента усиления	6
Калибровка шкалы кодировщика	6
Определение эффективности регистрации	7
Измерение спектра сцинтиллятора GAGG:Се без отражателя	7
Определение количества сработавших ячеек, определение световыхода	7
Моделирование, используемое для определения доли фотонов, достигших фотоприемника, от общего количества излученных фотонов	9
Результаты измерений	9
Заключение	13
Список литературы	14

Введение

Сцинтилляторы - вещества, проявляющие люминесценцию при поглощении ионизирующего излучения (гамма-кванты, электроны, альфа - частицы и др.). В общем случае излучаемое количество фотонов пропорционально количеству поглощенной энергии, что позволяет измерять энергетические спектры излучения.

Световыход - количество фотонов, излучаемых сцинтиллятором при поглощении определенного количества энергии (обычно 1 МэВ). Чем выше световыход, тем более чувствителен сцинтиллятор. Именно поэтому наилучшим вариантом для детектирования частиц являются сцинтилляторы с высоким световыходом (порядка 50 - 70 тыс. фотонов на 1 МэВ). Однако для детектирования высокоэнергичных частиц возможно применение сцинтилляторов с низким световыходом.

Как известно из математической статистики, дисперсия и относительная ошибка распределения Пуассона определяются следующим образом: $\sigma^2 = N$, $\delta = \frac{1}{\sqrt{N}}$, где σ - среднеквадратичное отклонение, N в рамках данной работы - число излученных фотонов. Из приведенных формул следует, что чем больше световыход, то есть чем больше количество излучаемых фотонов - тем ниже относительная ошибка. Именно поэтому высокий световыход очень важен.

В данной работе исследовались кристаллы $Gd_3Al_2Ga_3O_{12}$: *Ce* (сокращенно: GAGG:Ce). Кристаллы были произведены московской компанией АО "Фомос - Материалы". В наличии имеется несколько кристаллов данной фирмы. Представляет интерес охарактеризовать эти кристаллы (узнать их характеристики). В частности, в рамках данной работы измерялся световыход данных сцинтилляторов.

Исследованный в данной работе сцинтилляционный кристалл GAGG:Се является неорганическим. Можно отметить, что механизмы его люминесценции имеют много общего с происходящим в классическом представителе данного типа сцинтилляторов - NaI:Tl [3]. В случае GAGG:Се, в отличие от NaI:Tl, спектральное распределение лежит в области более длинных длин волн (\approx 520 нм, в то время как у NaI:Tl рабочей длиной волны является 415 нм).

Описание детектора

Характеристики сцинтиллятора	NaI:Tl	LYSO	GAGG:Ce
Плотность, г/см 3	3.67	7,1	6.62
Энергетическое разрешение, %	7.5	7.1	7.4
Световыход, ф/МэВ	38	32	40
Длина волны излучения, нм	415	420	520
Время высвечивания, нс	230	50	92
Гигроскопичность	+	-	-
Наличие собственного фона	-	+	-

Таблица 1 — Характеристики сцинтилляторов

В таблице вместе с исследуемым кристаллом GAGG:Се приведены характеристики кристаллов NaI:Tl и LYSO. NaI:Tl - стандартный сцинтилляционный кристалл, являющийся базовым кристаллом в сравнении с которым исследуются другие сцинтилляторы [1]. LYSO - это сцинтиллятор, который широко распространен в ядерной медицине и в целом при регистрации гамма-излучения. В сравнении с этими кристаллами можно видеть, что плотность GAGG достаточно высока - она выше чем у NaI:Tl и и достаточно близка к плотности кристалла LYSO, значит GAGG должен обладать хорошей эффективностью регистрации гамма-излучения. Энергетическое разрешение кристалла GAGG сравнимо с энергетическими разрешениями LYSO и NaI:Tl, он не уступает им по данному параметру. По световыходу GAGG является лучшим среди представленных кристаллов. Его световыход выше чем у LYSO, выше чем у NaI:Tl, следовательно амплитуда сигнала, получаемого от такого кристалла, будет достаточно большой, его удобно регистрировать возможно даже работая без усилителя. Длина волны излучения соответствует зеленой области спектра, что удобно в связи с тем, что она располагается недалеко от максимума чувствительности большинства фотоприемников. Данный кристалл негигроскопичен, благодаря чему с ним можно работать без корпуса. У GAGG нет собственного фона (так же как и у NaI:Tl), что позволяет избежать дополнительного измерения его собственных шумов. Отсутствие фона нельзя отметить в случае кристалла LYSO, имеющего высокий уровень собственного фона. [2]

Размер кристалла, исследуемого в работе, составлял 3 x 3 x 10 мм³.

Фоточувствительная площадь	$3 \ge 3 \mod^2$
Размер пикселя	$25 \ge 25 \text{ MKm}^2$
Число пикселей	14400
Длина волны максимума чувствительности	450 нм
Эффективность регистрации	45%

Таблица2-Характеристики HAMAMATSU MPPC S10931-025
P

В работе использовался фотодетектор HAMAMATSU MPPC S10931-025P

Касательно характеристик SiPM можно выделить размеры фоточувствительной площади (3 х 3 мм²), то есть площади сечения кристалла и площадь фотоумножителя совпадали, размер пикселя составлял 25 х 25 мкм², что означает, что площадь фотоумножителя содержала 14400 пикселей. Длина волны максимума чувствительности использованного SiPM составляет 450 нм, квантовая эффективность составляет 50% на данной длине волны. [4]

Методика измерений и обработки результатов

Методика измерения световыхода исследуемого в работе кристалла GAGG:Се содержала следующие основные этапы:

- 1. Измерение одноэлектронного спектра;
- 2. Калибровка шкалы кодировщика;
- 3. Определение коэффициента усиления;
- 4. Определение эффективности регистрации;
- 5. Измерение спектра сцинтиллятора GAGG:Се без отражателя;
- 6. Моделирование, используемое для определения доли фотонов, достигших фотоприемника, от общего количества излученных фотонов

7. Определение количества сработавших ячеек, определение ссветовыхода.

Описание установки

Рисунок 1 — Схема установки

- Напряжение питания 72.8 В
- Ток ≈ 0.39 мкА
- Длительность импульса от генератора $\tau=10~\mathrm{ns}$

Установка состояла из светодиода и фотоприемника (SiPM), расположенных на расстоянии ≈ 25 см. Питание на SiPM подавалось от источника питания через амперметр. Сигналы поступали через плату питания и усилитель сигнала на осциллограф, на котором происходил анализ исследуемых импульсов.

Длительности импульсов от генератора, использованных для получения одноэлектронного спектра: $\tau=10~{\rm ns.}$

Применявшийся в работе осциллограф Lecroy 620Zi имеет собственный амплитудноцифровой преобразователь. Таким образом, осциллограф использовался для получения спектров.

Коэффициент усиления SiPM рассчитывался по данным, полученным в OriginPro после построения спектра и фитирования функцией Гаусса.

Измерение одноэлектронного спектра

Для получения полной информации об образце SiPM необходимо определить следующие характеристики:

- 1. Коэффициент внутреннего усиления;
- 2. Эффективность регистрации света. [1]

Под коэффициентом усиления SiPM понимается отношение заряда, накопленного на элементарной емкости пикселя за время развития гейгеровского разряда, к заряду электрона. Экспериментально усиление можно определить по одноэлектронному спектру, полученному при малой интенсивности засветки (рисунок 4a).

На рисунке 46 представлен пьедестал одноэлектронного спектра (спектр шума).

Нулевой пик соответствует событиям, когда не сработал ни один пиксель. Его ширина определяется преимущественно шумами электроники; первый пик - сработал один пиксель; второй пик - сработали 2 пикселя и т.д..

Определение коэффициента усиления

Коэффициент усиления пикселя SIPM определяется по формуле:

$$K_{\text{пикселя}} = \frac{A_{1e} * K_{QDC}}{K_{\text{усил}} * q}$$

 K_{QDC} - цена канала QDC Lecroy 620 Zi; $A_{1e} = A_1 - A_0$ - разность между нулевым и первым пиками; A_1 - положение первого пика; A_0 - положение нулевого пика; $A_{1e} * K_{QDC}$ - заряд на выходе SiPM от одного пикселя; $K_{усил}$ - коэффициент усиления усилителя; q - заряд электрона (1.6 * 10¹⁹ Кл) [1]

 A_0 и A_1 снимаются с одноэлектронного спектра, Для определения коэффициента K_{QDC} требуется калибровка шкалы кодировщика.

Калибровка шкалы кодировщика

Коэффициент K_{QDC} определяется калибровкой шкалы. Осциллограф Lecroy 620 Zi производит построение одноэлектронного спектра в размерности [B·c]. Для перевода [B·c] в [Kл] к выходу осциллографа подключается емкость C ≈ 12 пФ, производящая дифференцирование входного сигнала по времени (в силу последовательного подключения по отношению к входному сигналу) и обеспечивающая домножение размерности выходного сигнала на $\left[\frac{\Phi}{c}\right]$. Другими словами, в работе используется дифференцирующая цепь, в которой, как известно из курса общей электротехники и электроники, выходное напряжение определяется как производная по времени от входного. Таким образом, подключенная емкость играла в определении коэффициента K_{QDC} роль оператора $C \cdot \frac{d}{dt}$.

Коэффициент K_{QDC} в рамках калибровки играл роль коэффициента пропорциональности между отложенными по оси х измеренными по снятым точкам значениями [B·c] и отложенным по оси у количеством электронов. В силу наличия существенного отклонения от начала координат построенной прямой, этот сдвиг необходимо учитывать. Итоговое выражение для поиска коэффициента усиления одного пикселя с учетом изложенной калибровки оказывается следующим:

$$K_{\text{пикселя}} = \frac{A_{1e} * K_{QDC} + B}{K_{\text{усил}}}$$

В - сдвиг по оси nVs на графике е- vs nVs.

Получение коэффициента $K_{\text{пикселя}}$ является сопутствующим измерением, необходимым для проверки того, что всё было измерено верно. Главным определенным параметром на данном этапе работы по-прежнему является полученное при измерении одноэлектронного спектра значение $A_{1e} = A_1 - A_0$.

Определение эффективности регистрации

Эффективность регистрации HAMAMATSU MPPC S10931-025P определяется по кривой эффективности регистрации излучения, зависящей от длины волны.

Рисунок 2 — Эффективность регистрации

Как известно, GAGG:Се излучает фотоны с максимумом излучения, соответствующим длине волны 520 нм. По кривой эффективности регистрации получаем значение коэффициента: $K_{eff} \approx 45\%$

Измерение спектра сцинтиллятора GAGG:Се без отражателя

Следующим этапом в определении световыхода исследуемого кристалла GAGG:Се является снятие спектров на известных источниках и определение положения пика полного поглощения. Измерение проводится на кристалле без отражателя. Сцинтиллятор предварительно оборачивается в светопоглощающее покрытие, свободной остается только грань, состыковываемая с SiPM. Светопоглощающее покрытие позволяет избежать учет коэффициентов отражения фотонов.

Измерение спектров проводится при помощи двух источников: ^{137}Cs и ^{241}Am .

Определение количества сработавших ячеек, определение световыхода

Зная положение пика полного поглощения и расстоние между пиками A_1 и A_0 одноэлектронного спектра, можно определить количество сработавших ячеек по формуле:

- (а) спектр GAGG:Се на ^{137}Cs ;
- (b) пьедестал GAGG:Се на ^{137}Cs ;
- (с) спектр GAGG:Се на ^{241}Am ;
- (d) пьедестал GAGG:Се на ^{241}Am ;
- (e) обработка спектра GAGG:Се на ^{137}Cs ; 8
- (f) обработка спектра GAGG:Се на ^{241}Am

$$N = \frac{X_c^{\text{ист}} - X_{c_p}^{\text{ист}}}{A_1 - A_0} * K_{\text{усил}}.$$

Зная величину отклика фотоприемника на один фотон, можно посредством обратного преобразования посчитать, какое количество фотонов достигло фотоприемник. Дискретные значения энергий линий излучения для пиков полного ппоглощения источников известны. В рамках данной работы наибольший интерес представляют линия 662 кэВ (пик полного поглощения в спектре ^{137}Cs) и линия 60 кэВ (пик полного поглощения в спектре ^{241}Am).

Истинное количество ячеек (число ячеек, которое должно было сработать) с учетом наличия нелинейного отклика SiPM может быть вычислено по формуле:

$$N_{firedcells} = N_{total} \cdot (1 - e^{-\frac{N_{photon} \cdot PDE}{N_{total}}}),$$
где

 $N_{firedcells}$ - количество сработавших ячеек; N_{total} - общее количество ячеек;

 $N_{photon} \cdot PDE$ - число истинно сработавших ячеек;

*N*_{photon} - количество излученных фотонов;

PDE - квантовая эффективность регистрации. [5]

Согласно данному выражению, истинное количество сработавших чеек определяется по формуле:

$$N_{photon} \cdot PDE = -N_{total} \cdot ln(1 - \frac{N_{firedcells}}{N_{total}})$$

Моделирование, используемое для определения доли фотонов, достигших фотоприемника, от общего количества излученных фотонов

В рамках данной работы неизвестно, какая часть от общего количества излученных фотонов достигает фотоприемника. Экспериментально доступными способами данную долю определить нельзя, возможно определение только при помощи соответствующего моделирования. При вычислении световыхода данный коэффициент (часть фотонов, достигших фотоприемника, от общего количества излученных фотонов) остается последним недостающим звеном.

Результаты измерений

Полученные осциллограмма и обработка одноэлектронного спектра представлены на рисунке 5.

Желтым цветом на осциллограмме изображен сигнал от SiPM, оранжевым приводится одноэлектронный спектр, охровым - пьедестал одноэлектронного спектра, красным изображен запускающий сигнал, который подавался одновременно в осциллограф и на светодиод.

Рисунок 4 — Спектры сигнала и пьедестала, используемых для определения контролируемых параметров

(а) - одноэлектронный спектр сигнала;

(b) - одноэлектронный спектр шума (пьедестал)

Коэффициент внутреннего усиления определялся на основе данных, полученных последовательным снятием одноэлектронного спектра, обработки полученного спектра в OriginPro и применением калибровки:

$$A_0 - A_1 = 1.594602 * 10^{-10} \text{B} \cdot \text{c}, \ K_{QDC} = 9 * 10^{16} \text{B} \cdot \text{c}^{-1}, \ \text{B} = 1 * 10^6$$

С учетом известного значения $K_{\rm усил} = 20$ получено следующее значение для коэффициента усиления одного пикселя:

$$K_{\text{пикселя}} = \frac{A_{1e} * K_{QDC} + B}{K_{\text{усил}}} = \frac{1.594602 * 10^{-10} * 9 * 10^{16} + 1 * 10^{6}}{20} = 8 * 10^{5}$$

Данная величина близка к значению, заявленному производителем: 7.5 * 10⁵.

Как известно, GAGG:Ce, так же как и любой другой сцинтиллятор, излучает в широком диапазоне длин волн с максимумом, располагающимся на значении длины волны 520 нм.

Спектры и пьедесталы, полученные на источниках, представлены на рис. 3. При помощи приложения OriginPro получены следующие положения пиков полного поглощения для ^{137}Cs и ^{241}Am соответственно:

$$\begin{split} X_c^{Cs} &= -2,68965*10^{-8} \text{ B} \cdot \text{c}, \ X_c^{Am} = -2,5144*10^{-9} \text{ B} \cdot \text{c}. \\ \text{Количество сработавших ячеек:} \\ N^{Cs} &= \frac{X_c^{Cs} - X_{c_p}^{Cs}}{A_1 - A_0} * K_{\text{усил}} = \frac{2,68965*10^{-8} + 2.86956*10^{-11}}{1,594602*10^{-10}} * 20 = 3377, \\ N^{Am} &= \frac{X_c^{Am} - X_{c_p}^{Am}}{A_1 - A_0} * K_{\text{усил}} = \frac{2.5144*10^{-9} + 1.37844*10^{-10}}{1,594602*10^{-10}} * 20 = 332. \end{split}$$

Известны значения энергий пиков полного поглощения использованных в работе источников:

Model	Gauss			
Equation	y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x- xc)/w)*2)			
Plot	В			
v0	1009,85073 ± 217,97414			
xc	8.35641E-11 ± 4.05891E-13			
w	4,08287E-11 ± 1,8401E-12			
A	3.26634E-7 ± 2.28751E-8			
Reduced Chi-Sqr	57529,37738			
R-Square (COD)	0,98965			
Adj. R-Square	0,9877			
Model	Gauss			
Equation	y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x xc)/w)*2)			
Plot	В			
y0	1509,74461 ± 251,47124			
XC	-7,58961E-11 ± 4,27903E-13			
w	3,8878E-11 ± 2,78526E-12			
A	1,83718E-7 ± 2,33998E-8			
Reduced Chi-Sqr	22360,59609			
R-Square (COD)	0,98682			
Adj. R-Square	0,98353			
Model	Causa			
TTI VI VI	Gauss			
Equation	y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x- xc)/w)*2)			
Equation	y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x- xc)/w)*2) B			
Equation Plot y0	y=y0 + (A/(w*sqrt(pi/2)))*exp(-2*((x- xc)/w)*2) B 1142,04811 ± 68,76834			
Equation Plot y0	Gloss y=y0 + (A/(w*sqrt(pi2)))*exp(-2*((x- xc)/w)*2) B 1142.04811 ± 68.76834 -2.40653E-10 ± 8.1753E-13			
Equation Plot y0 xc w	Gabss y=y0 + (A/(w*sqrt(pi2)))*exp(-2*((x- xc)/w)*2) B 1142.04811 ± 68,76834 -2.40653E-10 ± 8,1753E-13 4,73437E-11 ± 2,93798E-12			
Equation Plot y0 xc W A	Gauss y=y0 + (A(*(xs))*exp(-2*()x- xs)/w/y2) B 1142.04811 ± 68,76834 -2.40653E-10 ± 8,1753E-13 4,73437E-11 ± 2,93798E-12 1,00357E-7 ± 8,83437E-9			
Equation Plot y0 xc W A Reduced Chi-Sqr	Gauss y=y0 + (A/(xgrt[pi(2)])*exp(-2*((x- xc)/w)*2) B 1142_04811±68.76834 -2.40663E-10±8.1763E-13 4.73437E-11±2.93798E-12 1.00367E-7±8.83437E-9 14219.96137			
Equation Plot y0 xc W A Reduced Chi-Sqr R-Square (COD)	Galabs y=y0 + (A((W*sqt[pi2)))*exp(-2*((x- xc)/w)*2) B 1142,04811 ± 68,76834 -2,40653E-10 ± 8,1753E-13 4,73437E-11 ± 2,93798E-12 1,00357E-7 ± 8,83437E-9 14219,96137 0,9656			
Equation Plot y0 xc w A Reduced Chi-Sqr R-Square (COD) Adj. R-Square	y=y0 + (A((wsqt[µ2])))*exp(-2*()x- xc)/w)*2] B 1142.04811 ± 68.76834 - 2.40653E-10 ± 8.1753E-13 4.73437E-11 ± 2.93798E-12 1.0037E-7 ± 8.83437E-9 14219.96137 0.9666 0.96091			
Equation Plot y0 xc w A Reduced Chi-Sqr R-Square (COD) Adj R-Square Model	y=y0 + (A/(w134415)2))*exp(-2*()(x x2)h/22) B = 0 1142(D4652)=10 ± 0,17525=13 4,74437E-14 ± 0,37525=13 4,74437E-14 ± 0,3737E-1 1,00357E-2 ± 0,3437E-9 1,00566 0,96051 Gauss			
Equation Plot y0 xc A Reduced Chi-Sqr Adj, R-Square Model Equation	y=y0 + (Al(wsqu(a)2))*exp(-2*(), x2)h/22) B B 1142,046521=10 ± 8,7693.4 -2,466521=10 ± 8,1752=13 4,73475=11 ± 2,93796=1-2 1,00357E-7 ± 8,83437E-9 1,4219,84377 0,9656 0,56991 Gauss y=y0 + (Al(w*squ(p)2))*exp(-2*(),			
Equation Plot y0 xc WA Reduced Chi-Sqr R-Square (COD) Adj, R-Square Model Equation Plot	y=y0 + (A/(w*sqt(p/2)))*exp(2*(),)) 1142(2)4011 ± 68,76334 -2,40653E-10 ± 6,1753E-13 4,3437E-11 ± 2,3739E-12 1,0357E-7 ± 8,3837E-9 1421395437 0,9656 0,96091 Gauss y=y0 + (A/w*sqt(p/2))*exp(-2*()x xc)w)*2) B			
Equation Equation y0 xc w A Reduced Chi-Sqr R-Square (COD) Adj.R-Square Model Equation Plot y0	y=y0 + (Al(w*sart(µ2)))*exp(2*(x- B) B) -2,40653E-10 ± 6,76334 -2,40653E-10 ± 6,77534 -1,2037E-7 ± 6,3337E-9 t42 + 2,3378E-11 ± 2,35798E-12 -1,0337E-7 ± 6,3337E-9 t42 + 2,3578E-9 t42 + 2,3578E-9 -0,56697 -0,56691 -0,56691 -0,56691 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56657 -0,56757 -0,56757 -0,56757 -0,577577 -0,577577 -0,57757 -0,57757 -0,577577 -0,577577 -0,5775777 -0,57757			
Equation Equation y0 xc w A R-Square (COD) Adj R-Square Model Equation Plot Y0 xc	$\begin{array}{c} y=\!$			
Equation Plot y0 xc w A Reduced Chi-Sqr R-Square (COD) Adj.R-Square Model Equation Plot y0 xc w	p=θ + (Arris 4 gr(p)/2) (Perg 2 * 1)(e − 2) P = 0 + (Arris 4 gr(p)/2) (Perg 2 * 1)(e − 2) P = 1 142,04611 ± 68,76834 - 2,4663515 ± 0 ± 6,17556± 13 - 1,427572 + 1 ± 3,23756± 12 - 1,427572 + 1 ± 3,23756± 12 - 1,427555455 ± 3,57759 P + (Arris 4 gr(p)/2) (Perg 2 * 1)(a − 2) - 0,56659± 13 - 10,057555± 3,577799 - 4,202315± 10 ± 1,005435± 12 - 5,05445± 11 ± 4,16065± 12 - 5,05445± 11 ± 4,16065± 12 - 5,05445± 11 ± 4,16065± 12 - 1,05655± - 5,0577799 - 1,00545± 10 ± 1,40656± 12 - 1,00545± 11 ± 4,16065± 12 - 1,00545± 11 ± 4,1606± 12 - 1,0054± 11 ± 4,1606± 12 - 1,005± 11 ± 1,005± 12 - 1,005± 11 ± 11 ± 1,005± 12 - 1,005± 11 ± 1,005± 12 - 1,005± 11 ± 1,005± 12 - 1,005± 11 ± 11 ± 1,005± 11 ± 11 ± 1,005± 11 ± 1,005± 11 ± 11 ± 11 ± 1,005± 12 - 1,005± 11 ± 11 ± 1,005± 11 ± 11 ± 1,005± 11 ± 11 ± 1,005± 11 ± 1,005± 11 ± 11 ± 1,005± 11 ± 1,005± 11 ± 11 ± 1,005± 11 ± 1,005± 11 ± 11 ± 1,005± 11 ± 11 ± 11 ± 11 ± 11 ± 1,005± 11 ± 11 ± 11 ± 11 ± 11 ± 11 ± 11 ±			
Equation Equation Plot y0 xc A A A A Adg.R-Square (COD) A Model Equation Plot y0 xc xc Xc A	$\begin{split} & p = 0 + (M^{-1} \times qetp(2)) + seq^2 + 2(b_{c} \times qetp(2)) \\ & B \\ & 142, 0.4611 + 68, 70634 \\ & -2.406515 + 10 + 61, 7555 + 10 \\ & -2.406515 + 10 + 61, 7555 + 10 \\ & -2.406515 + 10 + 61, 7555 + 10 \\ & -2.406515 + 10 + 61, 7555 + 10 \\ & -2.40515 + 10 + 10 \\ & -2.40515 + 10 + 10 \\ & -2.40515 + 10 + 10 \\ & -2.40515 + 10 + 10 \\ & -2.40515 +$			
Plot Plot So Reduced Chi-Sqr R-Square (COD) Adj.R-Square Model Equation Plot So So Reduced Chi-Sqr Reduced Chi-Sqr	$\begin{array}{c} y_{19} = 0 + (A_{11}^{(11)} + get_{12}^{(21)} - get_{12}^{(21)} + get_{12}^{(21)} - get_{12}^{(21)} + get_{12}^{(21)} - get_{12}^{($			
Equation Plot Plot y0 xc Reduced Chi-Sqr R-Square (COD) Adj R-Square Model Equation Plot y0 xc w A Reduced Chi-Sqr Reduced Chi	p=0 + (k)(x)(2)(1)(x)(x)(2)(1)(x)(x)(2)(1)(x)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)			

Рисунок 5— (а) - осциллограмма; (b) - обработка одноэлектронного спектра

Рисунок 6 — График зависимости e- v
s $\rm pVs$

¹³⁷ $Cs: E^{Cs} = 662$ кэВ, ²⁴¹ $Am: E^{Am} = 60$ кэВ.

Отличие в энергиях пиков полного поглощения и в количестве сработавших ячеек у ^{137}Cs и ^{241}Am :

$$\frac{E^{Cs}}{E^{Am}} \approx 11, \frac{N^{Cs}}{N^{Am}} \approx 10$$

Отличие в энергиях и в количестве сработавших ячеек у ^{137}Cs и ^{241}Am может быть вызвано либо заниженной амплитудой пика полного поглощения у ^{137}Cs (нехваткой ячеек), либо завышенной амплитудой пика полного поглощения у ^{241}Am (избытком ячеек).

Известно, что SiPM имеет нелинейный характер отклика на входные сигналы. Для низких энергий данный нелинейный эффект проявляется слабо, с возрастанием энергии проявление нелийнейного отклика становится явным. В данной работе нелинейность на источнике ¹³⁷Cs проявляется явным образом.

Истинное количество сработавших ячеек с учетом вышеизложенных результатов получилось следующим:

$${}^{137}Cs: N_{photon} \cdot PDE = -N_{total} \cdot ln(1 - \frac{N_{firedcells}}{N_{total}}) \cdot = -14400 \cdot ln(1 - \frac{3377}{14400}) = 3848,$$

$${}^{241}Am: N_{photon} \cdot PDE = -N_{total} \cdot ln(1 - \frac{N_{firedcells}}{N_{total}}) \cdot = -14400 \cdot ln(1 - \frac{332}{14400}) = 335.$$

С учетом известного значения PDE (K_{eff}) , получено следующее количество зарегистрированных фотонов: 3848 3848

$${}^{137}Cs: N_{photon} = \frac{3848}{PDE} = \frac{3848}{0.45} = 8551,$$

$${}^{241}Am: N_{photon} = \frac{335}{PDE} = \frac{335}{0.45} = 744.$$

Заключение

Была проведена калибровка SiPM. По одноэлектронному спектру вычислен коэффициент усиления одного пикселя, данный коэффициент сравнен с табличным. Вычислено число фотонов, регистрируемых от сцинтиллятора GAGG:Се со светопоглощающим покрытием с источниками ^{137}Cs (662 кэв, гамма - излучение) и ^{241}Am (60 кэВ, гамма излучение):

 $^{137}Cs: N_{photon} = 8551,$ $^{241}Am: N_{photon} = 744.$

Список литературы

- [1] Т.С. Брантова, П.Ж. Бужан, Б.А. Долгошеин, К.И. Жуков, Б.А. Канцеров, П.В. Комиссаров, Н.М. Окатьева, Е.В. Попова ИЗМЕРЕНИЕ ОСНОВНЫХ ХАРАКТЕРИ-СТИК КРЕМНИЕВЫХ ФОТОУМНОЖИТЕЛЕЙ (SiPM), 2008
- [2] А.С.Симутин, М.Ю.Чернов, А.А.Гасанов, А.Д.Орлов, Н.В.Классен, С.З.Шмурак Исследование характеристик спектрометрического детектора на основе кристалла LaBr₃:Се и ФЭУ-184, 2012.
- [3] Акимов Ю.К.Фотонные методы регистрации излучений. Дубна: ОИЯИ, 2006.
- [4] MPPC[®] (multi-pixel photon counter), November 2009. URL: S10362-33
series KAPD1023E04.indd
- [5] Yu.Musienko Recent Progress and Perspectives in Solid State Photomultipliers Detector Seminar, CERN, 30.06.2017.