

Разработка методов расчета и анализа спектров реакторных антинейтрино для фундаментальных и прикладных задач

Студент: Д. В. Попов **Научный руководитель:** д.ф.-м.н., профессор М. Д. Скорохватов

Москва 2022

Мотивация, цель и задачи работы

Мотивация

- Фундаментальная наука: исследование нейтринных осцилляций определение иерархии масс нейтрино; <u>Новая физика:</u> поиск стерильных состояний нейтрино, исследование неунитарности матрицы смешивания PMNS, поиск нарушения Лоренц-ковариантности и т.д.
- 2. Прикладные приложения нейтринный метод мониторинга работы ядерного реактора;

Цель работы

Прецизионное изучение спектров реакторных антинейтрино.

Задачи

- Разработать алгоритм реконструкции спектров антинейтрино (модели конверсии КИ);
- Рассчитать спектры ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu в рамках модели КИ;
- Провести расчет и анализ неопределенностей модели КИ;
- Провести анализ наблюдаемых величин к вариациям в процедуре реконструкции;

Реакторные антинейтрино

- $\Phi_{\nu}(E_{\nu},t) = \frac{N_f}{4\pi L^2} \rho_{\nu}(E_{\nu},t)$ поток реакторных антинейтрино; N_f - число делений тяжелых изотопов: ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu
- $\rho_{\nu}(E_{\nu},t) = \alpha_5(t) \, \rho_{\nu}^5(E_{\nu}) + \alpha_8 \, \rho_{\nu}^8(E_{\nu}) + \alpha_9(t) \, \rho_{\nu}^9(E_{\nu}) + \alpha_1(t) \, \rho_{\nu}^1(E_{\nu}) кумулятивный спектр реакторных антинейтрино «в момент рождения»; <math>\alpha$ доли делений.
- ρ_ν⁽ⁱ⁾(E_ν) ~ Σω_k ρ_ν(E_ν, Q_k, Z_k) кумулятивный спектр антинейтрино продуктов деления i-ого изотопа (i = 5 (²³⁵U), 8 (²³⁸U), 9 (²³⁹Pu), 1 (²⁴¹Pu));
- $\rho_{\nu}(E_{\nu}, Q_k, Z_k)$ спектр антинейтрино одиночного бета-распада;

Методы расчета спектров реакторных антинейтрино:

- Метод *ab initio* прямое суммирование по всем возможным реализациям серий бета-распада продуктов деления тяжелых изотопов;
- Метод конверсии преобразование кумулятивных бетаспектров (измерены группой ILL в 80-ых годах) в спектры антинейтрино + данные НИЦ "КИ" 2021 – переоценка бетаспектров продуктов деления изотопов урана;

Процедура конверсии: модель КИ

 $\rho_{\beta}(T_{\beta}, Q, Z) = k p_{\beta} E_{\beta}(Q - T_{\beta})^{2} F(Z, E_{\beta}) \Delta(E_{\beta}, Q) - одиночный$ *разрешенный*бета-спектр;<math>Q - энергия реакции, $F(Z, E_{\beta}) - функция Ферми, \Delta(E_{\beta}, Q) - набор поправок модели КИ;$ $<math>\rho_{\nu}(E_{\nu}, Q, Z) = \rho_{\beta}(Q - T_{\beta}, Q, Z) - связь одиночного бета-спектра со спектром антинейтрино;$

Параметры, определяющие форму спектра:

Нормировочный коэффициент k, энергия бета-перехода Q. Заряд ядра Z заменяется эффективным зарядом <Z>(Q) с использованием ядерных баз данных.

АЛГОРИТМ РЕКОНСТРУКЦИИ:

- 10-15 синтетических бета-ветвей аппроксимируют спектр ILL по частям, начиная с жесткой области;
- К исходному, фиксированному набору ветвей добавляются дополнительные, с заведомо меньшими весами. Их параметры определяются путем аппроксимации всего исходного кумулятивного бета-спектра целиком.
- Полученный спектр усредняется по энергетическим интервалам шириной 250 кэВ.

Полученные результаты, сравнение

Ошибки даны на уровне достоверности 1σ (68%)

6/11

Полученные результаты, сравнение

Регистрация антинейтрино: ОБР

- $\Phi_{\nu}(E_{\nu}, t) = \frac{N_f}{4\pi L^2} \rho_{\nu}(E_{\nu}, t)$ [МэВ⁻¹ см⁻² сек⁻¹]– поток реакторных антинейтрино; N_f [дел сек⁻¹] число делений тяжелых изотопов: ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu;
- $\rho_{\nu}(E_{\nu},t) = \sum \alpha_{i}(t) \, \rho_{\nu}^{(i)}(E_{\nu})$ [МэВ⁻¹ дел⁻¹] кумулятивный спектр реакторных антинейтрино «в момент рождения»;
- $ho_{
 u}^{(i)}(E_{
 u})$ кумулятивный спектр антинейтрино продуктов деления i-ого изотопа;

$$\bar{\nu}_e + p \rightarrow n + e^+ -$$
обратный бета-распад (ОБР)

 $\frac{dN_{det}(T_e)}{dT_e} = \epsilon N_p \int \Phi_{\nu}(E_{\nu}) \frac{d\sigma_{OBP}(E_{\nu},T_e)}{dT_e} dE_{\nu}$ [МэВ⁻¹ сек⁻¹] – наблюдаемый спектр позитронов ОБР; $\epsilon - \Rightarrow \phi \phi$ ективность регистрации, N_p – число протонов в мишени;

 $\rho_{e}^{(i)}(T_{e}) = \int \rho_{\nu}^{(i)}(E_{\nu}) \frac{d\sigma_{\text{OBP}}(E_{\nu},T_{e})}{dT_{e}} dE_{\nu} \quad [cm^{2} \text{ M}
m{B}B^{-1} \text{ дел}^{-1}] - спектр позитронов ОБР, порождаемый$ кумулятивным спектром реакторных антинейтрино*i*–ого изотопа «в момент рождения». $<math>\sigma^{(i)} = \int \rho_{e}^{(i)}(T_{e}) dT_{e} = \int \rho_{\nu}^{(i)}(E_{\nu}) \sigma_{\text{OBP}}(E_{\nu}) dE_{\nu} \quad [cm^{2} \text{ дел}^{-1}] - выход ОБР$ *i*–ого изотопа;

$$\frac{\mathrm{d}N_{det}(T_e)}{\mathrm{d}T_e} = \frac{\epsilon N_p N_f}{4\pi L^2} \sum_i \alpha_i \,\rho_e^{(i)}(T_e)$$

$$N_{det}(T_e) = \frac{\epsilon N_p N_f}{4\pi L^2} \sum_i \alpha_i \, \sigma^{(i)}$$

Устойчивость отношений выходов ОБР к процедуре конверсии: вклад поправок

Погрешность отношения выходов ~3% Разброс за счет вариаций поправок ~0.2%

- *LC* поправка на конечные размеры ядер;
- *S* поправка на экранирование;
- *G*_β радиационная поправка;
- $\delta_{\rm WM}$ поправка на слабый магнетизм;

Исходные бета-спектры ILL фиксируются, возмущается процедура конверсии – «включаются» или «выключаются» различные поправки в различных комбинациях;

$$\frac{\sigma^{235}}{\sigma^{239}} = 1.44, \qquad \delta^{5/9} = 0.2\%$$

$$\frac{\sigma^{235}}{\sigma^{241}} = 1.04, \qquad \delta^{5/1} = 0.1\%$$

Устойчивость отношений к процедуре конверсии: вклад запрещенных переходов

 $\rho_{\beta}(T_{\beta}) = k p_{\beta} E_{\beta} (Q - T_{\beta})^{2} F(Z, E_{\beta}) \sum \alpha_{i}(Q) C_{i}(E_{\beta}, Q) (1 + \delta_{i}(E_{\beta}, Z, Q)) - 6$ ета-спектр смешанного типа; $\alpha_{i}(Q)$ – доля запрещенных переходов і-ого типа на данном энергетическом отрезке; $C_{i}(E_{\beta}, Q)$ – фактор формы (shape-фактор);

Рассматриваются однократно запрещенные переходы: неуникальные GT 0⁻ , 1⁻ и уникальные GT 2⁻

Исходные кумулятивные бета-спектры фиксируются, возмущается процедура конверсии – вводятся запрещенные переходы с различными весами (набор поправок фиксируется, но для каждого типа запрета он различен).

Для разных комбинаций долей запрещенных переходов α_i (разыгрываются) проводится конверсия бета-спектра в спектр антинейтрино. На рисунке справа представлена реализация для 500 итераций.

Устойчивость отношений к процедуре конверсии: вклад запрещенных переходов

Погрешность отношения выходов ОБР ~3% Разброс за счет учета запрещенных переходов ~0.4%

- Разработана модель конверсии КИ для реконструкции спектров реакторных антинейтрино и их анализа;
- Показано, что вклады от различных поправок к одиночным подгоночным спектрам независимым образом влияют на величину выхода ОБР;
- Показана устойчивость отношения выходов ОБР к процедуре конверсии и зависимость этого отношения только от отношения исходных кумулятивных бета-спектров;
- С учетом спектральной поправки КИ, рассчитаны спектры реакторных антинейтрино продуктов деления изотопов ²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu, отношение выходов *σ*²³⁵/*σ*²³⁹, которое согласуется с экспериментальными данными – решение проблемы реакторной антинейтринной аномалии.

Спасибо за внимание!

Дополнительные слайды

Зачем исследовать отношения?

$$\frac{\sigma^{i}}{\sigma^{j}} = F\left[\frac{\rho_{\nu}^{(i)} \sigma_{0\text{БP}}}{\rho_{\nu}^{(j)} \sigma_{0\text{БP}}}\right] = F\left[\frac{k^{(i)}\rho_{\beta}^{(i)} \sigma_{0\text{БP}}}{k^{(j)}\rho_{\beta}^{(j)} \sigma_{0\text{БP}}}\right] = F\left[\frac{\rho_{\beta}^{(i)}}{\rho_{\beta}^{(j)}}\right]$$

$$\rho_{\nu}(E_{\nu},t) = \rho_{\nu}^{5} \left[1 - \alpha_{9}(t) \left(1 - \frac{\rho_{\nu}^{9}}{\rho_{\nu}^{5}} \right) - \alpha_{8} \left(1 - \frac{\rho_{\nu}^{8}}{\rho_{\nu}^{5}} \right) - \alpha_{1}(t) \left(1 - \frac{\rho_{\nu}^{1}}{\rho_{\nu}^{5}} \right) \right]$$

$$\sim 0.30 \% \qquad \sim 7 \% \qquad \sim 0.2\%$$

$$\langle \sigma \rangle = \sigma^{5} \left[1 - \alpha_{9}(t) \left(1 - \frac{\sigma^{9}}{\sigma^{5}} \right) - \alpha_{8} \left(1 - \frac{\sigma^{8}}{\sigma^{9}} \right) - \alpha_{1}(t) \left(1 - \frac{\sigma^{1}}{\sigma^{5}} \right) \right]$$

Экспериментальное определение выхода σ^5 с большой точностью:

$$\sigma^{5} = \frac{\langle \sigma \rangle}{(1 - \delta_{8} - \delta_{1}) - \alpha_{9} \left(1 - \frac{\sigma^{9}}{\sigma^{5}}\right)}$$

Задача мониторинга работы ядерного реактора – определение изотопного состава:

$$\widehat{\alpha_{9}}(t) = \frac{\frac{\langle \sigma \rangle(t)}{\sigma^{5}} - (1 + \delta_{8})}{\frac{\sigma^{9}}{\sigma^{5}} - 1}$$

Зачем исследовать отношения? (2)

$$\frac{\sigma^{i}}{\sigma^{j}} = F\left[\frac{\rho_{\nu}^{(i)}}{\rho_{\nu}^{(j)}}\right] = F\left[\frac{k^{(i)}\rho_{\beta}^{(i)}}{k^{(j)}\rho_{\beta}^{(j)}}\right] = F\left[\frac{\rho_{\beta}^{(i)}}{\rho_{\beta}^{(j)}}\right]$$

Более строго:

$$\frac{\sigma^{i}}{\sigma^{j}} = \frac{\int \rho_{\nu}^{(i)}(\varepsilon)\sigma_{\rm IBD}(\varepsilon)d\varepsilon}{\int \rho_{\nu}^{(j)}(\varepsilon)\sigma_{\rm IBD}(\varepsilon)d\varepsilon} = \frac{\int k^{(i)}(\varepsilon)\rho_{\beta}^{(i)}(\varepsilon)\sigma_{\rm IBD}(\varepsilon)d\varepsilon}{\int k^{(j)}(\varepsilon)\rho_{\beta}^{(j)}(\varepsilon)\sigma_{\rm IBD}(\varepsilon)d\varepsilon} = \frac{k^{(i)}(\varepsilon_{1})\rho_{\beta}^{(i)}(\varepsilon_{1})\sigma_{\rm IBD}(\varepsilon_{1})}{k^{(j)}(\varepsilon_{2})\rho_{\beta}^{(j)}(\varepsilon_{2})\sigma_{\rm IBD}(\varepsilon_{2})}$$

 $\Delta E \rightarrow 0; \ \varepsilon_1, \varepsilon_2 \rightarrow \varepsilon$

$$\frac{\sigma^{i}}{\sigma^{j}} = \frac{k^{(i)}(\varepsilon) \,\rho_{\beta}^{(i)}(\varepsilon)}{k^{(j)}(\varepsilon) \,\rho_{\beta}^{(j)}(\varepsilon)} = \frac{\rho_{\beta}^{(i)}(\varepsilon)}{\rho_{\beta}^{(j)}(\varepsilon)}$$

Эволюция компонент спектра реакторных антинейтрино

$$\rho_{\nu}(E_{\nu},t) = \rho_{\nu}^{5} \left[1 - \alpha_{9}(t) \left(1 - \frac{\rho_{\nu}^{9}}{\rho_{\nu}^{5}} \right) - \alpha_{8} \left(1 - \frac{\rho_{\nu}^{8}}{\rho_{\nu}^{5}} \right) - \alpha_{1}(t) \left(1 - \frac{\rho_{\nu}^{1}}{\rho_{\nu}^{5}} \right) \right]$$

О реконструкции спектра антинейтрино продуктов деления ²³⁸U

 $ho_{
u}^{(i)}(E) = k(E) \,
ho_{eta}^{(i)}(E) \, ; \, k(E) -$ универсальная для всех изотопов функция пересчета;

Имеем $\rho_{\beta}^{(238)}(E)$ – измерен в Техническом университете Мюнхена (TUM), см. работу Experimental Determination of the Antineutrino Spectrum of the Fission Products of ²³⁸U / N. Haag [et al.] // Phys. Rev. Lett. — 2014. — Vol. 112, no. 12. — P. 122501.

Аккуратную конверсию проводить некорректно - мало точек. Используем уравнение выше, функцию k(E) определяем по спектрам ²³⁵U:

$$\rho_{\nu}^{(238)}(E) = k(E) \,\rho_{\beta}^{(238)}(E) \,; \qquad k(E) = \frac{\rho_{\nu}^{(235)}(E)}{\rho_{\beta}^{(235)}(E)}$$

E [keV]	$N_{\beta} \left[\frac{betas}{fiss. MeV} \right]$	ϵ [%]	$\epsilon_{exp,norm}$ [%]	ϵ_{BILL} [%]
2250 - 2500	1.032	3.2	2.1	1.7
2500 - 2750	$8.302 \cdot 10^{-1}$	3.0	2.1	1.7
2750 - 3000	$6.922 \cdot 10^{-1}$	2.4	2.1	1.7
3000 - 3250	$5.698 \cdot 10^{-1}$	2.3	2.1	1.7
3250 - 3500	$4.533 \cdot 10^{-1}$	2.4	2.1	1.7
3500 - 3750	$3.740 \cdot 10^{-1}$	2.4	2.1	1.7
3750 - 4000	$2.807 \cdot 10^{-1}$	2.7	2.1	1.7
4000 - 4250	$2.279 \cdot 10^{-1}$	2.9	2.1	1.7
4250 - 4500	$1.725 \cdot 10^{-1}$	3.5	2.1	1.8
4500 - 4750	$1.343 \cdot 10^{-1}$	3.9	2.1	1.8
4750 - 5000	$1.084 \cdot 10^{-1}$	4.5	2.1	1.8
5000 - 5250	$7.891 \cdot 10^{-2}$	5.5	2.1	1.8
5250 - 5500	$5.831 \cdot 10^{-2}$	6.8	2.1	1.8
5500 - 5750	$4.137 \cdot 10^{-2}$	9.7	2.1	1.8
5750 - 6000	$2.909 \cdot 10^{-2}$	11.7	2.1	1.8
6000 - 6250	$2.765 \cdot 10^{-2}$	11.1	2.1	1.8
6250 - 6500	$2.248 \cdot 10^{-2}$	12.7	2.1	1.8
6500 - 6750	$1.296 \cdot 10^{-2}$	18.9	2.1	1.9
6750 - 7000	$7.078 \cdot 10^{-3}$	28.1	2.1	1.9

Погрешности, обусловленные статистическим разбросом данных ILL

Процедура конверсии фиксируется (модель КИ), исходные бета-спектры возмущаются:

$$\rho_{\beta} \to N\left(\rho_{\beta}, \left[\Delta \rho_{\beta}\right]^{2}\right)$$

для всех энергий T_{β} .

b)

d)

0.0017

0.0016

Многократно проводится конверсия возмущенного спектра → получаем разброс результата конверсии – спектра антинейтрино, обусловленный статистическими ошибками исходных данных.

Поправки к форме подгоночных бетаспектров модели КИ

где «наивный» спектр $ho_{eta}^{(0)}(T_{eta},Q) = kp_{eta}E_{eta}(Q-T_{eta})^2F(Z,E_{eta})$

Поправки к форме подгоночных бетаспектров модели КИ

Отношение кумулятивных спектров антинейтрино продуктов деления ²³⁵U, ²³⁹Pu, ²⁴¹Pu, рассчитанных конверсией с учетом всех поправок к синтетических одиночным спектрам, к кумулятивным спектрам, рассчитанных конверсией с учетом только функции Ферми.

Аддитивность вклада поправок в выходы ОБР

Поправка 🛆	$\sigma(\Delta)$	$\sigma(A) - \sigma(\Delta)$	$\sigma(\Delta) - \sigma(1)$	$\sigma(A) - \sigma(A - \Delta)$
		$\sigma(A)$	$\sigma(\Delta)$	$\sigma(\Delta)$
1	6.38	3.33%	-	-
(L_0C)	6.62	-0.30%	3.63 %	3.64%
S	6.35	3.79%	- 0.47 %	-0.45%
G_{eta}	6.46	2.12%	1.28 %	1.36%
WM	6.32	4.24%	- 0.97 %	-1.06%
$(L_0C)S$	6.59	0.15%	3.19%	3.18%
$(L_0C) \operatorname{G}_{\beta}$	6.71	-1.67%	4.92 %	4.85%
$(L_0 C) \delta_{\rm WM}$	6.55	0.76%	2.60%	2.58%
SG _β	6.43	2.58%	0.78%	0.76%
$S\delta_{ m WM}$	6.28	4.85%	-1.59%	-1.67%
${ m G}_eta\;\delta_{ m WM}$	6.39	3.18%	0.16%	0.15%
$(L_0C) S G_\beta$	6.67	-1.06%	4.35%	4.24%
$(L_0C) S \delta_{\rm WM}$	6.51	1.36%	2.00%	2.12%
$(L_0 C) G_\beta \delta_{WM}$	6.63	-0.45%	3.77%	3.79%
$G_{\beta} S \delta_{WM}$	6.36	3.64%	-0.31%	-0.30%
А – все поправки	6.60	-	3.33%	-

нияу МИСРИ

Исходные бета-спектры фиксируются, возмущается процедура конверсии – «включаются» или «выключаются» различные поправки в различных комбинациях;

$$h(\Delta) = \frac{\sigma(\Delta) - \sigma(1)}{\sigma(\Delta)}$$

1. $h(\Delta) -$ аддитивный функционал $h(\Delta_1 \Delta_2) = h(\Delta_1) + h(\Delta_2)$ с точностью до **долей процента**

2. $h(\Delta)$ не зависит от изотопа, то есть от входных данных;

3. $\sigma(\Delta_1 \Delta_2 \dots \Delta_N) = \sigma(1) \left(1 + h(\Delta_1) + h(\Delta_2) + \dots + h(\Delta_N) \right);$

Расчет выхода ОБР²³⁵U для разных поправок и их комбинаций; Выходы ОБР в единицах 10⁻⁴³ см² дел⁻¹; Относительные погрешности выходов ОБР составляют **3**%

Эффективный заряд $\langle Z \rangle (Q)$

Рисунок взят из работы Huber P. On the determination of antineutrino spectra from nuclear reactors // Phys. Rev. C. — 2011. — Vol. 84. — P. 024617.

Учет запрещенных переходов

Модель КИ

 $\rho_{\beta}(T_{\beta}) = k p_{\beta} E_{\beta} (Q - T_{\beta})^{2} F(Z, E_{\beta}) (1 + \delta(E_{\beta}, Z, Q)) - разрешенный бета-спектр;$ Деление энергетического диапазона на различные отрезки с учетом статистики;
Единая для всей процедуры параметризация эффективного заряда $\langle Z \rangle(Q)$;
Фиксированный набор поправок $\delta(E_{\beta}, Z, Q)$ для каждой синтетической ветви;

Модель КИ 2.0 (прототип)

 $\rho_{\beta}(T_{\beta}) = k p_{\beta} E_{\beta} (Q - T_{\beta})^{2} F(Z, E_{\beta}) \sum \alpha_{i}(Q) C_{i}(E_{\beta}, Q) (1 + \delta_{i}(E_{\beta}, Z, Q)) -$ эффективный бета-спектр смешанного типа;

α_i - доля запрещенных переходов i-ого типа запрета на данном энергетическом отрезке; C_i(E_β, Q) – фактор формы (shape-фактор) – учет запрещенности перехода;

Деление энергетического диапазона на равные отрезки и вычисление $\alpha_i(Q)$ на каждом из них; Для каждого типа запрета индивидуальная параметризация эффективного среднего заряда $\langle Z \rangle(Q)$; Для каждого типа запрета индивидуальный набор поправок $\delta_i(E_\beta, Z, Q)$;

Отличия запрещенных и разрешенных спектров

- спектр
 антинейтрино
 запрещенного
 перехода GT ΔJ^π

Запрещенные переходы

26

TABLE I. The shape factors $C(Z, E_e)$ and WM corrections for the allowed and first forbidden GT transitions. The fourth and sixth columns are the shape factor calculated with the plane wave approximation and WM corrections respectively [26], and the fifth column is the shape factor using the exact relativistic calculation of the Dirac wave function [29].

				Shape factor $C(E_e)$	
Classification	ΔJ^{π}	Operator	Plane wave approximation	Exact relativistic calculation	WM correction $\delta_{WM}(E_e)$
Allowed GT	1+	$\Sigma \equiv \sigma \tau$	1	1	$\frac{2}{3} \frac{\mu_{\nu} - 1/2}{M_{\nu} a_{\nu}} (E_{e} \beta^{2} - E_{\nu})$
Nonunique first forbidden GT	0-	$[\Sigma, r]^{0-}$	$p_e^2 + E_\nu^2 + 2\beta^2 E_\nu E_e$	$E_{\nu}^2 + p_e^2 \tilde{F}_{p_{1/2}} + 2p_e E_{\nu} \tilde{F}_{sp_{1/2}}$	0
Nonunique first forbidden GT	1-	$[\Sigma, r]^{1-}$	$p_e^2 + E_\nu^2 - \frac{4}{3}\beta^2 E_\nu E_e$	$E_{\nu}^{2} + \frac{2}{3}p_{e}^{2}\tilde{F}_{p_{1/2}} + \frac{1}{3}p_{e}^{2}\tilde{F}_{p_{3/2}} - \frac{4}{3}p_{e}E_{\nu}\tilde{F}_{sp_{1/2}}$	$\frac{\mu_{\nu} - 1/2}{M_N g_A} \frac{(E_e \beta^2 - E_{\nu})(p_e^2 + E_{\nu}^2) + 2\beta^2 E_e E_{\nu}(E_{\nu} - E_e)/3}{p_e^2 + E_{\nu}^2 - 4\beta^2 E_{\nu} E_e/3}$
Unique first forbidden GT	2-	$[\Sigma, r]^{2-}$	$p_e^2 + E_\nu^2$	$E_{ u}^2 + p_e^2 ilde{F}_{p_{3/2}}$	$\frac{3}{5} \frac{\mu_{\nu} - 1/2}{M_N g_A} \frac{(E_e \beta^2 - E_{\nu})(p_e^2 + E_{\nu}^2) + 2\beta^2 E_e E_{\nu}(E_{\nu} - E_e)/3}{p_e^2 + E_{\nu}^2}$

В таблице сверху приведены факторы формы для используемых запрещенных переходов; На рисунке справа приведены доли запрещенных переходов для различных энергетических диапазонов.

Данные из работы

Li Y.-F., Zhang D. New Realization of the Conversion Calculation for Reactor Antineutrino Fluxes // Phys. Rev. D. — 2019. — Vol. 100, no. 5. — P. 053005.

Классификация запрещенных переходов

Тип перехода	Правило отбора	$\lg(fT_{1/2})$			
Разрешенные:					
Сверхразрешенные	$\Delta J=0,1^+$	3.5 ± 0.2			
Затрудненные	$\Delta J=0,1^+$	5.7 ± 1.1			
Запрещенные:					
Первая степень, неуникальные	$\Delta J = 0, 1^-$	7.5 ± 1.5			
Первая степень, <i>уникальные</i>	$\Delta J = 2^{-}$	8.5 ± 0.7			
Вторая степень, неуникальные	$\Delta J = 2^+$	12.1 ± 1.0			
Вторая степень, уникальные	$\Delta J = 3^{-}$	11.7 ± 0.9			
и так далее					

См., например, Ц.С. Ву, С.А. Мошковский «Бета-распад»

 $f = \int F(Z, E_{\beta}) \times E_{\beta} p_{\beta} (Q + m_e - E_{\beta})^2 dE_{\beta}$ – объем фазового пр-ва; $T_{1/2}$ – период полураспада;

О неопределенностях и недостатках метода конверсии

1. Соответствие конвертированного спектра антинейтрино и реального:

 $\rho_{\nu}(E_{\nu},t) = [1 + C_{\Sigma}(E_{\nu},t)] \sum_{i} \alpha_{i}(t) \rho_{\nu}^{(i)}(E_{\nu}) + \rho_{SNF}(E_{\nu},t)$

 $C_{\Sigma}(E_{
u},t)$ — спектральная поправка, учитывающая вклады долгоживущих изотопов и бетаизлучателей, возникающих при активации нейтронами продуктов деления; $ho_{SNF}(E_{
u},t)$ — спектр антинейтринного излучения бассейна выдержки;

- Метод конверсии не позволяет определить спектр антинейтрино в мягкой области <2 МэВ и в жесткой >8 МэВ;
- 3. Конвертированные кумулятивные спектры антинейтрино получаются для более грубого разбиения интервала энергий (~250 кэВ), чем расчетные *ab initio*;
- Следствие пункта 3: конвертированный спектр антинейтрино не воспроизводит микроструктуру реального реакторного спектра;
- 5. Сложность учета запрещенных переходов и поправки на слабый магнетизм;
- 6. Неустранимая (на данный момент) погрешность спектров антинейтрино, порождаемая статистической ошибкой исходных бета-спектров и ошибкой их нормировки;