Измерение спектра нейтральных пионов с помощью калориметра PHOS эксперимента ALICE

Кусков В.А.

нияу мифи

Научный руководитель: Блау Д.С.

31 мая 2022

Введение

• Изучение PDF/nPDF:

2 / 20

В состав детектора ALICE входит фотонный спектрометр (PHOS), разработанный для измерения энергии фотонов и нейтральных мезонов.

 π^{0} spectrum PHOS

Параметр	Значение
Z _{vrtx}	< 10 cm
Количетсво ячеек	>2
Минимальная энергия, MeV	300/100
Максимальная энергия, GeV	120
Время пролета, ns	25
Главная очь ливня M_{02} , cm 2	0.2
CPV, σ	2.5

At this analysis the following datasets were used:

- MC LHC18b9[b,c], LHC18f5_2 with 20 p_T -hard bins;
- Real Data LHC16[r,s], LHC17l_pass1.

Отбирались данные по следующим триггерам:

- MB детекторы V0A и V0C;
- L0 низкоэнергетический триггер PHOS (L0);
- L1 Высокоэнергетический триггер PHOS (L1).

Метод инварриантных масс

- 4 диапазона фитирования: [0.055, 0.220] ГэВ/с², [0.065, 0.22] ГэВ/с², [0.55, 0.20] ГэВ/с², [0.055, 0.24] ГэВ/с²;
- 2 функции описания комбинаторного фона pol2 и pol3;
- 2 функции описания пика Gaus и Crystal Ball.

Метод инварриантных масс

31 мая 2022

Отбор наложенных кластеров

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

Отбор наложенных кластеров

- Merged cluster acc. $N_{merged}^{pass}(M_{02})/N_{merged}^{all}(M_{02});$
- Bg rejection rate $N_{notmerged}^{notpass}(M_{02})/N_{notmerged}^{all}(M_{02})$. Каждая точка (синие квадраты) на ROC-кривой представляет ограничение на
- минимальный M_{02} от 0 до 10 см² ([0;10], [0.1; 10], [0.2; 10] и т.д.).

Эффективость восстановления

Сырой спектр нейтральных пионов корректируется на эффективность реконструкции:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{\mathrm{d}^{3}N}{p_{T}\mathrm{d}p_{T}\mathrm{d}y\mathrm{d}\varphi} = \frac{1}{2\pi}\frac{1}{N_{ev}}\frac{1}{p_{T}}\frac{1}{\varepsilon_{rec}}\frac{\mathrm{d}^{2}N}{\mathrm{d}p_{T}\mathrm{d}y}$$

Кусков В.А. (НИЯУ МИФИ)

 π^{0} spectrum PHOS

Trigger rejection factors

При регистрации событий по триггерам L0 и L1 необходимо также учитывать частоту срабатывания триггеров по отношению к событиям, зарегистрированным по триггеру МВ с помощью коэффициента подавления триггеров (trigger rejection factor):

$${\it RF} = rac{dN_{Trig}/dy/dp_T}{dN_{MB}/dy/dp_T}$$

11/20

- Разработан метод по отбору наложенных кластеров от π^0 в калориметре PHOS;
- Получен выход нейтральных пионов в pPb-столкновениях при $\sqrt{s_{NN}} = 8.16$ TэB методом инвариантных масс и методом наложенных кластеров, максимальное отклонение $\sim 40\%$, полученный спектр согласуется со спектром, опубликованным коллаборацией ALICE;
- Впервые получен выход нейтральных пионов в pp-столкновения при $\sqrt{s} = 13$ ТэВ;
- Метод наложенных кластеров позволил расширить диапазон реконструируемых нейтральных пионов до 120 ГэВ/с.

• = •

СПАСИБО ЗА ВНИМАННИЕ!

• • = • • = •

3

31 мая 2022

$$f(m_{\gamma\gamma},\sigma,\alpha) = \begin{cases} C \left[e^{-\frac{(m_{\gamma\gamma}-m)^2}{2\sigma^2}} + e^{\frac{m_{\gamma\gamma}-m}{\alpha}} \left(1 - e^{-\frac{(m_{\gamma\gamma}-m)^2}{2\sigma^2}}\right) \right], \ m_{\gamma\gamma} < m \\ C \exp \left(-\frac{(m_{\gamma\gamma}-m)^2}{2\sigma^2} \right), \ m_{\gamma\gamma} > m \end{cases}$$
(1)

$$f(m_{\gamma\gamma},\sigma,n,\alpha) = \begin{cases} C \exp\left(-\frac{(m_{\gamma\gamma}-m)^2}{2\sigma^2}\right), m_{\gamma\gamma}-m > -\alpha\sigma \end{cases}$$
(2)

3

Рис.: Доли различных кластеров в выборке: а) – доли наложенных кластеров выделенных категорий; б) – доля всех наложенных кластеров среди всех кластеров PHOS

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< □ ▶ < ⊡ ▶ < ⊒ ▶ < Ξ</p>
31 мая 2022

Рис.: Коэффициенты подавления триггеров: а) – для триггера L0 по отношению к триггеру MB; 6) – для триггера L1 по отношению к триггеру L0