Inclusive Z(νν)γ full Run2 analysis report

Diana Pyatiizbyantseva on behalf of the ZnunuGamma group

National Research Nuclear University "MEPhI"

MEPhI@Atlas meeting

June 08, 2022

Motivation

Z

Z

~~~~~/

~~~~~/

min

~~~~~~

Z/Y\*

BSM

- Standard Model:
- Integral and differential in  $\mathbf{E}_{T}^{\gamma}$ ,  $\mathbf{N}_{jets}$ ,  $\mathbf{p}_{T}^{miss}$ ,  $\Delta \phi[\gamma, \mathbf{p}_{T}^{miss}]$ ,  $\mathbf{p}_{T}(\mathbf{Z}\gamma)$ ,  $\eta_{\gamma}$  cross-sections.
- Aiming for **5%** of cross-sections uncertainty for  $E_{\tau}^{\gamma} > 200$  GeV to asses high-level corrections.
- Comparison with theory predictions including NNLO QCD and <u>NLO EWK corrections</u>.

Beyond SM:

- The strongest up-to-date limits on anomalous neutral triple gauge-boson couplings (aTGCs) using vertex functions and EFT formalisms.

- Possible combinations:
- Combination of the EFT limits between  $Z\gamma$  and ZZ.
- Ratio of Zy/ZZ cross-sections. Maybe differential in  $N_{iets}$  and  $E_{T}^{miss}$ .

#### Selection optimisation: increase in statistical significance

<u>Topology</u>: high-energetic  $\gamma$  + high missing transverse momentum  $p_T^{miss}$ 

Multivariate (MV) method of the selection optimisation takes into account the signal significance Z as a function of the threshold values of the variables:

$$Z = N_{
m signal} / \sqrt{N_{
m signal} + N_{
m bkg}}$$

The output of the MV optimisation procedure is a vector of threshold values of the variables at which the maximum Z is reached.

	Preselections	Cut Value				
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 120 { m ~GeV}$	Selections	$N_{ m signal}$	$N_{bkg}, \ \cdot 10^3$	Z
	$ ilde{E}^{\gamma}_{\mathrm{T}}$	$> 150 { m ~GeV}$	Preselections	$12380\pm9$	$77.6\pm0.7$	$41.3\pm0.2$
Numb	er of tight isolated photons	$N_{\gamma}=1$	Selections	$9843\pm8$	$15.5\pm0.5$	$61.8\pm0.6$
<u></u>	Lepton veto	$N_e = 0, N_\mu = 0$	- $E_{\mathrm{T}}^{\mathrm{miss}} > 130 \; \mathrm{GeV}$	$9939\pm8$	$16.2\pm0.5$	$61.5\pm0.6$
	Selections	Cut Value	- $E_{\rm T}^{\rm miss}$ significance > 11	$11261\pm8$	$33.1\pm0.6$	$53.5\pm0.3$
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 130 { m ~GeV}$	$-  \Delta \phi(\vec{p_{\mathrm{T}}^{\mathrm{miss}}}, \gamma)  > 0.6$	$9858\pm8$	$16.0\pm0.5$	$61.4 \pm 0.6$
SR	$E_{\rm T}^{\rm miss}$ significance	> 11	$-  \Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j_1)  > 0.4$	$10016\pm8$	$17.6\pm0.5$	$60.3\pm0.6$
	$ \Delta \phi(p_{\mathrm{T}}^{\mathrm{mnss}},\gamma) $	> 0.6				
	$ \Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{mass}}, j_1) $	> 0.4				

No significant increase in statistical significance with using  $N_{h-iets}$  and  $p_T^{SoftTerm}$  variables.

### Photon pointing: beam-induced background (BIB)

- Muons from pion and kaon decays in hadronic showers, induced by beam losses in non-elastic collisions with gas, deposit large amount of energy in calorimeters through radiative processes (= fake jets).
- The characteristic peaks of the fake jets due to BIB concentrate at  $\pm \pi$  and **0** (mainly due to the bending in the horizontal plane that occurs in the D1 and D2 dipoles and the LHC arc).





Rejection efficiency: (100  $\pm$  3)% Acceptance efficiency: (99.7  $\pm$  0.9)%

### Background composition



### jet $\rightarrow \gamma$ misID background: correlation factor



## jet $\rightarrow \gamma$ misID background: uncertainties

#### Statistical uncertainty:

- The event yields of four regions in data and non jet  $\Rightarrow \gamma$  background are varied by ±1 $\sigma$  independently (4%).
- The statistical uncertainty on the signal leakage parameters is negligible.

Total statistics: 4%.

Central value	$1960{\pm}83$
loose'3	-334
loose'4	-397
loose'5	-472
Isolation gap $+0.15 \text{ GeV}$	+33
Isolation gap $-0.15 \text{ GeV}$	-22



Non-isolated

Isolated

#### Systematic uncertainty:

- Anti-tight definition and isolation gap choice variations of ABCD regions determination for  $\pm 1\sigma$  changes in data yield (**24%**).
- Uncertainty coming from the signal leakage parameters is obtained via using different generators and parton shower models (9%).

Signal leakage parameters	MadGraph+Pythia8, Sherpa 2.2	MadGraph+Herwig7, MadGraph+Pythia8	Relative deviation
$c_B$	$0.0713 \pm 0.0002$	$0.1000 \pm 0.0011$	29%
$\mathbf{c}_{C}$	$0.00879 \pm 0.00007$	$0.0092 \pm 0.0003$	4%
$c_D$	$0.00070\pm0.00002$	$0.00099 \pm 0.00010$	29%
$jet \rightarrow \gamma$ est.	1960	1785	9%

• The iso/ID uncertainty on reconstruction photon efficiency  $\delta_{eff}^{iso/ID}$  (1.4%):

• 
$$\sigma_{iso}^{c_{B}}(\text{relative}) = \delta_{iso}^{\text{eff}} * (c_{B} + 1)/c_{B}$$
  
•  $\sigma_{ID}^{c_{C}}(\text{relative}) = \delta_{ID}^{\text{eff}} * (c_{C} + 1)/c_{C}$ 
•  $\sigma_{iso}^{c_{D}}(\text{relative}) = \delta_{iso}^{\text{eff}} * (c_{B} + 1)/c_{B}$ 
•  $\sigma_{ID}^{c_{D}}(\text{relative}) = \delta_{ID}^{\text{eff}} * (c_{C} + 1)/c_{C}$ 
•  $\sigma_{ID}^{c_{D}}(\text{relative}) = \delta_{ID}^{\text{eff}} * (c_{C} + 1)/c_{C}$ 

Total systematics: 26%.

**Total number of jet** $\rightarrow \gamma$  events: 1960 ± 80 ± 510. Z( $\nu\nu$ )+jets and multi-jet MC predicts 1600 ± 1200 events.

#### $e \rightarrow \gamma$ misID background: Z-peak method

Source: W(Iv), top and tt processes.

Estimation procedure:

1. estimating  $e 
ightarrow \gamma$  fake rate as  $rate_{e
ightarrow \gamma} = rac{(N_{e\gamma} - N_{bkg})}{(N_{ee} - N_{bkg})}$ ,

where  $N_{ee}$ ,  $N_{e\gamma}$  – number of ee and e $\gamma$  events in Z-peak mass window ( $M_z$  – 10 GeV,  $M_z$  + 10 GeV),  $N_{bkg}$  – background in Z-peak mass window extrapolated from sideband with exponential pol1 or pol2 fit.



2. building e-probe CR (SR with electron instead of photon).

3. scaling data distributions from e-probe CR on fake rate.

# $e \rightarrow \gamma$ misID background: uncertainties



Contamination is determined as:

fake  $e{+}E_{_{\mathrm{T}}}^{\mathrm{miss}}$ 

real  $e + E_{T}^{miss}$ 

 Difference between "real fake rate" in Z(ee) MC and tag-and-probe method performed on Z(ee) MC (varies from 1.13% to 19.4%).
 Total systematics on the fake-rate: 22%.

-

#### 2. E-probe CR:

• Impurity of the region (0.46%).

Total syst. on the background yield: 6%.

<u>Total background</u> (e-probe region scaled by fake-rate):  $3070 \pm 12 \pm 187$ .



# $jet \rightarrow E_T^{miss}$ misID background: estimation strategy

- Background originating from γ+jets processes is significantly reduced by applying selections on E<sub>T</sub><sup>miss</sup> and E<sub>T</sub><sup>miss</sup>-significance.
- > For now, **MC simulation** is used to estimate this background.
- > The MC normalisation is estimated from the CR constructed in **low-E\_T^{miss}-significance range** ( $E_T^{miss}$ -significance < 11) with  $E_T^{miss}$  selection relaxed to  $E_T^{miss}$  > 100 GeV.
- Normalisation coefficient is equal to **0.66**, which is close to the normalisation factor obtained using 2D-sideband method in  $Z(vv)\gamma$  EWK analysis (0.68).
- > The plan is to estimate this background for each bin using **2D-sideband method**:  $E_T^{miss}$ -significance and other discriminative variable (e.g.  $\Delta \phi[\gamma, p_T^{miss}]$  or  $p_T^{SoftTerm}$ ) will be used to construct the sidebands.

# Control plots



For jet+ $\gamma$  bkg, the shape is taken from Z(vv) $\gamma$  QCD MC.  $\gamma$ +jet bkg has 0.66 normalisation. e+ $\gamma$  bkg: DD.

The total uncertainty includes the statistical uncertainty for all bkgs, while for jet+ $\gamma$  and e+ $\gamma$  bkgs there is also the systematic uncertainty.

# Control plots



For jet+y bkg, the shape is taken from Z(vv)y QCD MC. y+jets bkg has 0.66 normalisation. e+y bkg: DD. The total uncertainty includes the statistical uncertainty for all bkgs, while for jet  $\rightarrow \gamma$  and  $e \rightarrow \gamma$  bkgs there is also the systematic uncertainty.

### Summary

- Several steps of the inclusive Z(νν) Run2 analysis are already done: selection optimisation, data-driven estimation of jet+γ, e+γ and (preliminary)
   E<sub>T</sub><sup>miss</sup>+jet misID backgrounds, control plots.
- Plans:
- Re-optimise the SR after adding  $Z(vv)\gamma$  and  $W\gamma$  EWK samples +  $W(\tau v)$  samples with separation of lepton and hadron channels ( $\sqrt{done}$ ).
- Estimate:
  - $E_{T}^{miss}$  + jet background using 2D-sideband method.
  - pile-up background (expected to be negligible).
  - $\circ$  Wy background.
- Uncertainties.
- Cross-section measurements.
- Limits on aTGCs.
- EB request till the end of the year.



#### **Object selections**

#### Photon selection:

#### **Electron selection:**

E<sub>T</sub><sup>γ</sup> > 10 GeV, |η| < 2.37, crack region excluded, cluster quality cut, ambiguity cut, tight ID, FixedCutTightCaloOnly isolation, ΔR(γ, e/μ) < 0.4

egion  $p_T > 4.5$  GeV,  $|\eta| < 2.47$ , crack region ut, excluded, loose ID,  $\Delta R(e,\mu) < 0.1$ 

#### Muon selection:

 $p_T > 4 \text{ GeV}, |\eta| < 2.47, \text{ crack region}$ excluded, loose ID,  $|z_0^* \sin\theta| < 0.5 \text{ mm}, d_0 \text{ signif.} < 3$ 

#### Jet selection:

$$\begin{split} E_{T}^{} &> 50 \text{ GeV}, \ &|\eta| < 4.5, \\ &\text{AntiKt4EMPFlowJets}, \\ &\text{tight JVT}, \ &\Delta R(jet,e/\mu/\gamma) < 0.4 \end{split}$$

#### Selection optimisation: distributions



For jet+γ bkg, the shape is taken from Z(vv)+jets and multi-jet MC. γ+jet bkg has 0.66 normalisation. e+γ bkg: W(ev), W(τv), top, tt MC.

#### Selection optimisation: distributions



For jet+ $\gamma$  bkg, the shape is taken from Z(vv)+jets and multi-jet MC.  $\gamma$ +jet bkg has 0.66 normalisation. e+ $\gamma$  bkg: W(ev), W( $\tau v$ ), top, tt MC.

#### Selection optimisation: multi-jet problematic normalisation



without multi-jet samples

with multi-jet samples

Multi-jet samples are not used for the optimisation procedure due to their problematic normalisation.

# Selection optimisation: $N_{b\text{-jet}}$ and $p_{T}^{\ SoftTerm}$



## Selection optimisation: event yields

FixedCutTight Fix			dCutTightCalo(	Only			
Variable	W/O N	IultiJet	With	With			
			MultiJet	MultiJet			
E <sub>T</sub> <sup>miss</sup> signif.	>11	>11	>12	—			
$\Delta \phi(E_T^{miss},\gamma)$	>0.6	>0.7	>0.7	_			
$\Delta \phi(E_T^{miss}, j_1)$	>0.4	>0.4	>0.4	_			
E <sup>miss</sup> , GeV	>130	>130	>130	2. <del></del>			
	Signal						
$Z(\nu\nu)\gamma QCD$	9752 ±8	<b>9840</b> ±8	9355 ±8	12380 ±9			
$Z(\nu\nu)\gamma EWK$	0 ±0	<b>0</b> ±0	0 ±0	0 ±0			
Total signal	9752 ±8	<b>9840</b> ±8	9355 ±8	12380 ±9			
	i di	Background		na ar r			
$W\gamma$ QCD	3610 ±21	3645 ±22	3265 ±21	7456 ±30			
$W\gamma$ EWK	0 ±0	0 ±0	0 ±0	0 ±0			
tt, top, W(e $ u$ )	<b>3128</b> ±447	<b>3463</b> ±518	3328 ±512	9039 ±636			
$tt\gamma$	210 ±3	<b>213</b> ±3	165 ±3	888 ±6			
$\gamma$ +j	<b>7501</b> ±78	<b>7598</b> ±78	6261 ±71	59162			
				±203			
Zj	213 ±16	<b>315</b> ±20	<b>295</b> ±19	<b>486</b> ±23			
$Z(II)\gamma$	266 ±4	270 ±4	242 ±4	608 ±7			
MultiJet		1243.91 $\pm$	0.6+-0.4	$18532 \pm 4645$			
		1243.02					
Total bkg.	14928±455	$15504 \pm 525$	13558±518	96172			
				$\pm$ 4693			
Stat. signif.	62.1±0.6	<b>61.8</b> ±0.6	<b>61.8</b> ±0.6	37.6 ±			

### Selection optimisation: isolation checks

Isolation	FixedC	CutTight		FixedCutTightCaloOnly				
Multijet	_	+	_	+	_	+	+	+
	+ E <sub>T</sub> <sup>miss</sup> sign >	11	+ E <sub>T</sub> <sup>miss</sup> sign > <b>11</b>		+ E <sub>T</sub> <sup>miss</sup> sign > <b>11</b>			+ E <sub>T</sub> <sup>miss</sup> sign > <b>12</b>
	+ $ \Delta \varphi(\gamma, E_{T}^{miss})  > 0.6$		+ $ \Delta \varphi(\gamma, E_{T}^{miss})  > 0.6$		+ $ \Delta \varphi(\gamma, E_{T}^{miss})  > 0.7$		_	+ $ \Delta \varphi(\gamma, E_{T}^{miss})  > 0.7$
Selections	+  Δφ(j <sub>1</sub> ,E <sub>T</sub> <sup>miss</sup> ) > 0.4		+ $ \Delta \varphi(j_1, E_T^{miss})  > 0.4$		+  ∆φ(j <sub>1</sub> ,E <sub>T</sub> <sup>miss</sup> ) > 0.4			+  ∆φ(j <sub>1</sub> ,E <sub>T</sub> <sup>miss</sup> ) > 0.4
	+ E <sub>T</sub> <sup>miss</sup> > 130		+ E <sub>T</sub> <sup>miss</sup> > 130		+ E <sub>T</sub> <sup>miss</sup> > 130			+ E <sub>T</sub> <sup>miss</sup> > 130
Signal	9752 ± 8	9752 ± 8	9843 ± 8	9843 ± 8	9840 ± 8	9840 ± 8	12381 ± 9	9355 ± 8
Background	14928 ± 455	16172 ± 1324	15520 ± 525	16764 ± 1349	15505 ± 525	16749 ± 1349	96172 ± 4693	13558 ± 518
Significance	62.1 ± 0.6	60.6 ± 1.5	61.8 ± 0.6	60.3 ± 1.5	61.8 ± 0.6	60.3 ± 1.5	37.6 ± 0.8	61.8 ± 0.7
	Ť				Ť			Ť
	multivariate				multivariate			multivariate <sub>21</sub>
	method				method			method

#### Beam-induced background (BIB)



#### jet $\rightarrow \gamma$ misID background: regions definition



#### FixedCutTightCaloOnly:

```
A: tight, E_{T}^{cone40} - 0.022 p_{T}^{\gamma} < 2.45 [GeV]

B: tight, 2.45 + gap < E_{T}^{cone40} - 0.022 p_{T}^{\gamma} [GeV]

C: non-tight, E_{T}^{cone40} - 0.022 p_{T}^{\gamma} < 2.45 [GeV]

D: non-tight, 2.45 + gap < E_{T}^{cone40} - 0.022 p_{T}^{\gamma} [GeV]
```

**Non-tight:** at least one of the cuts on the following variables should fail in these:

- loose'2: ws3, Fside
- loose'3:  $w_{s3}$ ,  $F_{side}$ ,  $\Delta E$
- loose'4:  $w_{s3}$ ,  $F_{side}$ ,  $\Delta E$ ,  $E_{ratio}$
- loose'5:  $w_{s3}$ ,  $F_{side}$ ,  $\Delta E$ ,  $E_{ratio}$ ,  $w_{tot}$

 $\begin{array}{l} \textbf{EixedCutTightCaloOnly:}\\ \textbf{B-E: tight, 4.45 < E_T^{cone40} - 0.022 \ p_T^{\ \gamma} < 10.45 \ [GeV]}\\ \textbf{D-F: non-tight, 4.45 < E_T^{cone40} - 0.022 \ p_T^{\ \gamma} < 10.45 \ [GeV]}\\ \textbf{E: tight, 10.45 < E_T^{cone40} - 0.022 \ p_T^{\ \gamma} \ [GeV]}\\ \textbf{F: non-tight, 10.45 < E_T^{cone40} - 0.022 \ p_T^{\ \gamma} \ [GeV]} \end{array}$ 

# jet $\rightarrow \gamma$ misID background: isolation working point

#### • Isolation: FixedCutTight, without upper cut

<b>FixedCutTight</b> , (w/o upper cut)							
	MC						
	loose'2	loose'3	loose'4	loose'5			
R-factor	$1.05 \pm 0.15$	$1.14 \pm 0.15$	$1.19 \pm 0.14$	$1.39 \pm 0.17$			

Data-driven						
Cut	loose'2	loose'3	loose'4	loose'5		
7.95	$1.6 \pm 0.3$	$1.5 \pm 0.3$	$1.4 \pm 0.3$	$1.4 \pm 0.3$		
8.45	$1.5 \pm 0.3$	$1.5 \pm 0.3$	$1.4 \pm 0.3$	$1.4 \pm 0.3$		
8.95	$1.4 \pm 0.3$	$1.3 \pm 0.3$	$1.3 \pm 0.3$	$1.3 \pm 0.3$		
9.45	$1.6 \pm 0.4$	$1.5 \pm 0.4$	$1.5 \pm 0.4$	$1.5 \pm 0.3$		
9.95	$1.6 \pm 0.4$	$1.5 \pm 0.4$	$1.7 \pm 0.4$	$1.6 \pm 0.4$		

#### Isolation: FixedCutTight, with upper cut 25.45 GeV

${f FixedCutTight,(uppercut=25.45{ m GeV})}$						
MC						
	loose'2	loose'3	loose'4	loose'5		
R-factor	$1.06 \pm 0.15$	$1.15 \pm 0.16$	$1.21 \pm 0.15$	$1.40 \pm 0.17$		

	Data-driven							
	Cut	loose'2	loose'3	loose'4	loose'5			
	8.45	$1.1 \pm 0.2$	$1.1 \pm 0.2$	$1.03 \pm 0.18$	$1.06 \pm 0.18$			
	8.95	$0.96 \pm 0.18$	$0.97 \pm 0.17$	$0.96 \pm 0.17$	$0.97\pm0.16$			
	9.05	$1.01 \pm 0.18$	$1.02 \pm 0.18$	$1.01 \pm 0.18$	$1.01\pm0.17$			
1	9.45	$1.08 \pm 0.19$	$1.10 \pm 0.19$	$1.10 \pm 0.19$	$1.12 \pm 0.18$			
	9.95	$1.03 \pm 0.18$	$1.03 \pm 0.18$	$1.16 \pm 0.19$	$1.16 \pm 0.19$			
	10.45	$1.1 \pm 0.2$	$1.1 \pm 0.2$	$1.2 \pm 0.2$	$1.2 \pm 0.2$			
	10.95	$1.2 \pm 0.2$	$1.2 \pm 0.2$	$1.3 \pm 0.2$	$1.3 \pm 0.2$			

#### • Isolation: FixedCutTight and track inversion

FixedCutTight (inversion), (w/o upper cut)						
MC						
	loose'2	loose'3	loose'4	loose'5		
R-factor	$1.01 \pm 0.12$	$1.15 \pm 0.12$	$1.29\pm0.13$	$1.58 \pm 0.16$		

Data-driven						
Cut	loose'2	loose'3	loose'4	loose'5		
9.45	$1.09 \pm 0.13$	$1.15 \pm 0.13$	$1.09 \pm 0.11$	$1.13 \pm 0.11$		
9.95	$1.08 \pm 0.12$	$1.16 \pm 0.12$	$1.11\pm0.11$	$1.13 \pm 0.10$		
10.20	$1.07 \pm 0.12$	$1.13 \pm 0.12$	$1.09 \pm 0.10$	$1.12 \pm 0.10$		
10.45	$1.09 \pm 0.12$	$1.14 \pm 0.12$	$1.10 \pm 0.10$	$1.14 \pm 0.10$		
10.95	$1.18 \pm 0.13$	$1.23 \pm 0.12$	$1.17 \pm 0.10$	$1.20 \pm 0.10$		

#### Isolation: FixedCutTightCaloOnly, without upper cut

${f FixedCutTightCaloOnly, (w/o upper cut)}$						
MC						
	loose'2	loose'3	loose'4	loose'5		
R-factor	$1.06\pm0.10$	$1.14\pm0.11$	$1.22 \pm 0.10$	$1.40 \pm 0.12$		

Data-driven										
Cut loose'2		loose'3	loose'4	loose'5						
9.45	$1.08 \pm 0.11$	$1.14\pm0.11$	$1.12\pm0.10$	$1.13\pm0.10$						
9.95	$1.07\pm0.10$	$1.13 \pm 0.10$	$1.15 \pm 0.10$	$1.15 \pm 0.10$						
10.45	$1.09 \pm 0.10$	$1.14 \pm 0.10$	$1.14 \pm 0.10$	$1.15 \pm 0.10$						
10.95	$1.18\pm0.11$	$1.23\pm0.11$	$1.21\pm0.10$	$1.22\pm0.10$						
11.45	$1.23\pm0.11$	$1.27\pm0.11$	$1.22 \pm 0.10$	$1.22 \pm 0.10$						

#### jet $\rightarrow \gamma$ misID background: isolation working point



loose'2

loose'3

#### jet $\rightarrow \gamma$ misID background: isolation working point



loose'4

loose'5

26

#### jet $\rightarrow \gamma$ misID background: estimation technique



	Data	$W\gamma \ QCD$	$W\gamma EWK$	$W(e\nu), top, tt$	$tt\gamma$	$\gamma + \mathrm{jet}$	$Z(ll)\gamma$
A	$24946\pm158$	$3655\pm22$	$145.9\pm0.7$	$3070\pm12$	$213\pm3$	$5016\pm52$	$270 \pm 4$
В	$5163 \pm 72$	$337 \pm 8$	$14.1\pm0.2$	$140.9\pm0.5$	$21.9\pm1.0$	$161\pm9$	$15.1\pm1.3$
С	$1586 \pm 40$	$32\pm2$	$1.42\pm0.07$	$41.92 \pm 0.14$	$2.2\pm0.3$	$36 \pm 4$	$2.4 \pm 0.4$
D	$2805\pm53$	$3.0\pm0.6$	$0.21\pm0.03$	$0\pm 0$	$0.82\pm0.19$	$0.8\pm0.4$	$0.19\pm0.11$

#### $e \rightarrow \gamma$ misID background: background under Z peak



> Systematics on bkg estimation under Z peak are evaluated by variation of N<sup>bkg</sup> values in ee and e $\gamma$  pairs.

- >  $N_{min}$  and  $N_{max}$  values are used as variations of  $N_{ee}^{bkg}$ . In ey pairs extrapolation function parameters are varied by their statistical uncertainties one by one. Resulting integral of the function is used for variation of  $N_{ey}^{bkg}$ .
- > Sum in quadrature of the largest variations of  $N_{ev}^{bkg}$  and  $N_{ee}^{bkg}$  is taken as systematics.

# $E_T^{miss} \rightarrow jet misID background: estimation strategy$

METpt deltaPhi ph MET hist soft\_term\_pt\_METsign\_hist  $\Delta \phi(\gamma, \vec{P}_T^{miss})$ 2400 signif 3 25( 2200 Emiss 2000 200 1800 25 1600 2 15( 140C 20 1.5 1200 1000 15 100 800 10 600 50 400 0.5 200 700 E<sub>T</sub><sup>miss</sup> 100 200 300 400 500 600 10 20 30 40 50 60 soft\_term\_pt  $E_T^{miss}$ signif >11 var1 1.3101 $p_T^{SoftTerm} < 16$ var2  $E_T^{miss}$ signif >11 &&  $\Delta \phi$ (jet lead,  $p_T^{miss}$ ) > 0.4 var1 1.24685 $p_T^{SoftTerm} < 16$ var2  $E_T^{miss}$ signif >11 &&  $\Delta\phi$ (jet\_lead,  $p_T^{miss}$ ) > 0.4 &&  $\Delta\phi(\gamma, p_T^{miss})$  > 0.6 var1 1.24627  $p_T^{SoftTerm}$ < 16var2

R for variables configurations w/o soft term is very bad (>>1)

# Pile-up background

- In full Run2 Z(II)γ inclusive analysis it was found that events with Z and photon from different primary vertices have non-negligible probability (up to 5% of the total event yield)
- Since our final state assumes high energetic photons,  $E_T^{miss}$ , probability of such events should be much smaller.
- Fraction of pile-up background is calculated as:

$$f_{\rm PU} = \frac{N_{\rm data,\ 2-track\ Si}^{|\Delta z| > 50mm} - N_{\rm single\ pp,\ 2-track\ Si}^{|\Delta z| > 50mm}}{N_{\rm data,\ 2-track\ Si} \times 0.32}, \ N_{\rm single\ pp,\ 2-track\ Si}^{|\Delta z| > 50mm} = SF_1 \times SF_2 \times N_{\rm MC,\ 2-track\ Si}^{|\Delta z| > 50mm}$$

- $SF_1$  is equal to the ratio of events in data to events in Sherpa MC sample near  $|\Delta z|$  around zero (4.61±0.07)
- $SF_2$  normalization factor taking into account the mismodelling in the tails of  $|\Delta z|$  distribution (it was calculated for Sherpa Zy QCD by Z(II)y inclusive team using events with FSR photons) (1.5±0.3)

